APPUNTI DI TECNICA DELLE COSTRUZIONI

LA TEORIA SEMIPROBABILISTICA ED IL CALCOLO AGLI STATI LIMITE
STRUTTURE IN CEMENTO ARMATO

(Autore: Ing. Mario Zafonte)
INDICE

1. Premessa .. 3
2. Metodi di misura della sicurezza nelle costruzioni .. 3
 2.1. Metodo delle Tensioni Ammissibili .. 3
 2.2. Metodo Probabilistico ... 4
3. Statistica Matematica .. 6
 3.1. Valore Medio ... 7
 3.2. Varianza del campione .. 7
 3.3. Deviazione Standard ... 7
 3.4. Frequenza Cumulativa .. 8
 3.5. Funzione Densità di Probabilità e Ripartizione di Probabilità ... 9
4. Variabile Aleatoria Gaussiana .. 10
5. Teoria Probabilistica e Meccanica delle Strutture ... 12
6. Variabile Aleatoria Gaussiana Standardizzata VAGS .. 14
7. Frattili – Valori Caratteristici .. 16
8. Metodo Semiprobabilistico ... 19
 8.1. Valore Caratteristico delle Resistenze .. 19
 8.2. Valore Caratteristico delle Azioni ... 19
 8.3. D.M. 14/01/2008 ... 20
 8.3.1. Valori di Calcolo delle Resistenze dei Materiali .. 20
 8.3.1.1. Resistenze di calcolo dei materiali (art. 4.1.2.1.1) .. 20
 8.3.1.2. Resistenza di calcolo a compressione del calcestruzzo ... 20
 8.3.1.3. Resistenza di calcolo a trazione del calcestruzzo ... 20
 8.3.1.4. Resistenza di calcolo dell’acciaio .. 21
 8.3.1.5. Tensione tangenziale di aderenza acciaio-calcestruzzo ... 21
 8.3.2. Resistenza a sforzo normale e flessione (elementi monodimensionali) ... 21
 8.3.3. Resistenza nei confronti di sollecitazioni taglianti ... 23
9. STATI LIMITE PER LE TRAVI.. 26
 9.1. Stato Limite Ultimo per Sforzo Normale e Flessione ... 27
 9.1.1. Costruzione Dominio Resistenza .. 32
1. **Premessa**

Con l’introduzione delle nuove “Norme Tecniche per le Costruzioni” di cui al **D.M. 14 gennaio 2008** i risultati dei calcoli che riguardano il progetto delle armature, la verifica delle tensioni di lavoro dei materiali e del terreno, etc. devono essere valutate in relazione agli stati limite che si possono verificare durante la vita nominale della struttura.

2. **Metodi di misura della sicurezza nelle costruzioni**

 ![Diagram](image.png)

2.1. **Metodo delle Tensioni Ammissibili**

Con il metodo delle Tensioni Ammissibili, facendo preliminarmente ricorso ad un criterio di crisi puntuale del materiale, si misura e si controlla la sicurezza attraverso un semplice confronto tra la resistenza del materiale (ridotta mediante un adeguato coefficiente di sicurezza) e le massime tensioni (in valore assoluto) ingenerate nella struttura dalle azioni esterne, ottenute attraverso un’analisi in campo elastico lineare.

\[\sigma_{\text{max}} \leq \sigma_{\text{amm}} = \frac{R_k}{\gamma}\]

Tale sicurezza la enunciamo quindi in campo deterministico, infatti tutte le quantità che entrano in gioco sono rappresentate da numeri ben precisi.

Come sappiamo invece, ad esempio, se prendiamo \(n\) cubetti di calcestruzzo (confezionati allo stesso modo) e li sottoponiamo a compressione, non si ottiene mai lo stesso valore di rottura, per cui non si può avere la certezza sul massimo valore della tensione sopportabile dal nostro cubetto.

Il metodo deterministico delle Tensioni Ammissibili presenta inoltre altri difetti, tra cui:

- **Arbitrarietà del coefficiente di sicurezza**
 Il coefficiente di sicurezza \(\gamma\) deve essere necessariamente ampio per coprire tutte le incertezze (effetto psicologico);

- **Onerosità del criterio di misura della sicurezza**
 Ci si limita a controllare le tensioni nelle fibre di un limitato numero di sezioni (quelle maggiormente sollecitate) restando largamente ed anti economicamente al di sotto dei valori ammissibili convenzionali nella maggior parte della rimanente struttura;
- *Non si valutano le condizioni di esercizio*
 Non si conosce la vita della struttura dopo la crisi;

- *Le forze considerate hanno valori ben precisi*
 Non si tiene conto del fatto che le forze applicate alla struttura, per un qualsiasi evento, possono anche cambiare durante la vita della struttura stessa. Inoltre, non si conosce il valore massimo che tali forze possono avere affinché la struttura continui a resistere.

Si deve riconoscere quindi che non può esistere la sicurezza assoluta, misurata per via deterministica, in quanto i parametri che concorrono alla formazione dell’oggetto “struttura” sono tutti affetti da più o meno spiccate aleatorietà.

2.2. **Metodo Probabilistico**

Con il metodo probabilistico, la pronuncia della sicurezza viene fatta verificando che: “la probabilità di collasso cui è soggetta la struttura è minore di un certo numero \(\varepsilon \) (fissato dal legislatore)

\[
P_c < \varepsilon
\]

dove \(P_c \) è un funzionale che dipende da un certo numero (discreto e/o elevato) di funzioni che sono *variabili aleatorie*.

In poche parole, la differenza tra il metodo deterministico ed il metodo probabilistico, nasce dal fatto che gli “ingredienti” che concorrono alla formazione del giudizio sulla sicurezza, nel metodo deterministico sono delle grandezze che hanno degli espressi valori numerici, mentre nel metodo probabilistico sono delle funzioni.

Alla data odierna, osserviamo però che il metodo probabilistico, è di difficile applicazione in quanto:

- a) non tutte le funzioni di probabilità delle variabili aleatorie che concorrono alla determinazione della sicurezza strutturale sono note;
- b) ammesso di conoscere tutte le funzioni, l’elaborazione per arrivare alla pronuncia di sicurezza è dispendiosa e complicata.

Solo a scopo di conoscenza, si precisa che alla data attuale, sono noti tre livelli di analisi probabilistica:

- Livello 1 (o livello Europeo) detto anche *semiprobabilistico*;
- Livello 2 (o livello Americano);
- Livello 3 (o livello Completo);

Nel livello 1, detto anche semiprobabilistico, gli aspetti probabilistici vengono messi in conto mediante l’introduzione dei *Valori Caratteristici* delle Azioni e delle resistenze dei materiali.

Nel livello 2, le funzioni che devono descrivere le variabili aleatorie non entrano come tali ma entrano con due numeri:

- a) valor medio della variabile aleatoria;
- b) deviazione standard della variabile aleatoria.

Il livello 3 è quello in cui la sicurezza si enuncia introducendo direttamente le funzioni di probabilità delle variabili aleatorie.
Poiché, come indicato nel § 2.3 “Valutazione della Sicurezza” del D.M. 14 gennaio 2008:

Per la valutazione della sicurezza delle costruzioni si devono adottare criteri probabilistici scientificamente comprovati. Nel seguito sono normati i criteri del metodo semiprobabilistico agli stati limite basati sull’impiego dei coefficienti parziali di sicurezza, applicabili nella generalità dei casi; tale metodo è detto di primo livello. Per opere di particolare importanza si possono adottare metodi di livello superiore, tratti da documentazione tecnica di comprovata validità. Nel metodo semiprobabilistico agli stati limite, la sicurezza strutturale deve essere verificata tramite il confronto tra la resistenza e l’effetto delle azioni. Per la sicurezza strutturale, la resistenza dei materiali e le azioni sono rappresentate dai valori caratteristici, \(R_{ki} \) e \(F_{kj} \) definiti, rispettivamente, come il frattile inferiore delle resistenze e il frattile (superiore o inferiore) delle azioni che minimizzano la sicurezza. In genere, i frattili sono assunti pari al 5%. Per le grandezze con piccoli coefficienti di variazione, ovvero per grandezze che non riguardino univocamente resistenze o azioni, si possono considerare frattili al 50% (valori mediani).

La verifica della sicurezza nei riguardi degli stati limite ultimi di resistenza si effettua con il “metodo dei coefficienti parziali” di sicurezza espresso dalla equazione formale:

\[
R_d \geq E_d
\] \((2.2.1) \)

dove
- \(R_d \) è la resistenza di progetto, valutata in base ai valori di progetto della resistenza dei materiali e ai valori nominali delle grandezze geometriche interessate;
- \(E_d \) è il valore di progetto dell’effetto delle azioni, valutato in base ai valori di progetto \(F_{dj} = F_{kj} \cdot \gamma F_j \) delle azioni come indicato nel § 2.5.3, o direttamente \(E_{dj} = E_{kj} \gamma E_j \).

I coefficienti parziali di sicurezza, \(\gamma M_i \) e \(\gamma F_j \), associati rispettivamente al materiale i-esimo e all’azione j-esima, tengono in conto la variabilità delle rispettive grandezze e le incertezze relative alle tolleranze geometriche e alla affidabilità del modello di calcolo.

La verifica della sicurezza nei riguardi degli stati limite di esercizio si esprime controllando aspetti di funzionalità e stato tensionale.

nel seguito verrà descritto in dettaglio il metodo semiprobabilistico e le verifiche agli stati limite.

Solo a scopo di completezza e per meglio chiarire alcuni concetti che si utilizzano correntemente nel metodo semiprobabilistico, si ritiene preliminarmente utile introdurre delle nozioni di statistica matematica.
3. **Statistica Matematica**

La statistica matematica, fondamentalmente può essere considerata una scienza che si occupa della lettura e della progettazione di esperimenti fisici.

Supponiamo ad es. che l’esperimento fisico sia quello di misurare la Resistenza a Compressione di un cubetto di calcestruzzo.

Osserviamo subito che questo esperimento lo possiamo considerare come un campione estratto dalla popolazione di tutte le prove standard che sono state fatte nel mondo su questo tipo di cubetto.

Supponiamo che l’ampiezza di questo campione sia N=1000, l’evento sarà la misura di una certa resistenza su un certo provino.

Naturalmente avrò tanti eventi quanto è grande il campione. Lo spazio campione è cioè tanto grande da contenere il numero degli eventi.

Per organizzare i risultati posso procedere in vari modi, un primo modo può essere quello di elencarli così come li ho misurati, però tale organizzazione sarebbe di poca utilità. Un altro modo di organizzare i risultati è quello di disegnare gli istogrammi delle frequenze assolute per classi di eventi, ossia, ad es.:

![Istogramma frequenze](image)

Un evento è ad es. \(100 \leq R \leq 150\)

La frequenza assoluta di questo evento è il numero di volte che la resistenza misurata (tra le 1000 misure) non è più piccola di 100 e non è più grande di 150:

\[
\overline{f}(A) = 200 \quad \text{per} \quad 100 \leq R \leq 150
\]

Un’altro evento è ad es. \(150 \leq R \leq 200\), per il quale si ha: \(\overline{f}(A) = 311\)

La somma delle frequenze assolute ovviamente sarà pari all’ampiezza del campione N=1000.
Oltre a rappresentare i risultati mediante le frequenze assolute, è possibile rappresentare gli stessi mediante le frequenze relative che si ottengono a partire da quelle assolute dividendo per l’ampiezza del campione:

\[f(A) = \frac{f(A')}{N} \]

Nel caso in esame, ad es. la frequenza relativa legata all’evento \(100 \leq R \leq 150 \) è pari a: \(f(A)=200/1000 \).

Si osservi che l’istogramma delle frequenze relative è simile a quello delle frequenze assolute, anche se rappresentano valori diversi, ed entrambi si adagiano su una curva.

L’area sottesa nel diagramma delle frequenze relative vale 1, vale N nel diagramma delle frequenze assolute.

3.1. Valore Medio

Dato un certo campione, si definisce valore medio del campione il rapporto tra la sommatoria dei risultati degli eventi e l’ampiezza del campione:

\[\bar{x} = \frac{\sum_{i=1}^{n} x_i}{N} \]

3.2. Varianza del campione

Si definisce Varianza del campione il rapporto:

\[s^2 = \frac{1}{(N-1)} \cdot \sum_{i=1}^{n} (x_i - \bar{x})^2 \]

3.3. Deviazione Standard

Si definisce deviazione standard del campione, la radice quadrata positiva della varianza. La deviazione standard viene espressa nella stessa unità di misura del singolo evento \((x_i) \), nel caso in esame ad es. viene espressa in kg/cm².

\[s = \sqrt{\frac{1}{(N-1)} \cdot \sum_{i=1}^{n} (x_i - \bar{x})^2} \]
In particolare si osservi che la deviazione standard misura “la dispersione dei risultati rispetto al valor medio” degli stessi. Maggiore è l’ampiezza del campione (e quindi più accurato è l’esperimento) e minore è la deviazione standard.

3.4. Frequenza Cumulativa

Altra importante funzione utilizzata in statistica è la frequenza cumulativa la quale è definita per ogni classe di evento ed è pari alla somma delle frequenze assolute delle classi di evento precedenti:

\[\bar{F}_j = \sum_{i=1}^{j} f_i \]

Ad es. nel caso dell’esperimento in esame, per la classe di evento j-esima: 0-300, risulta:

\[\bar{F}_{300} = 48 + 200 + 311 + 170 + 149 = 878 \]

Il diagramma delle frequenze cumulative assolute è dunque la curva integrale del diagramma di \(\bar{f} \).

In un punto qualsiasi delle ascisse, la corrispondente ordinata rappresenta la somma delle aree precedenti.

Nel punto finale l’ordinata vale \(N \) oppure 1 a seconda se rappresenta la Frequenza Cumulativa delle frequenze assolute o la Frequenza Cumulativa delle frequenze relative.
3.5. **Funzione Densità di Probabilità e Ripartizione di Probabilità**

Data una certa variabile aleatoria $X(\omega)$, la stessa può considerarsi definita quando si conosce la relativa funzione che:

- ci consente di determinare la probabilità per il singolo avvenimento:
 \[P[\omega : X(\omega) = x] = P(X = x) \]

- ci consente di determinare la probabilità che la stessa non sia maggiore di un certo valore x:
 \[P[\omega : X(\omega) \leq x] = P(X \leq x) \]

Nota tale funzione, osserviamo che se la V.A. è definita in uno spazio continuo, la probabilità $P(X = x)$ è pari ad $f(x)dx$:

\[
P(X = x) = f(x)dx
\]

Dove

- X è la variabile aleatoria;
- x è lo stato variabile (scalare, numero reale);
- $f(x)$ è la Funzione densità di probabilità.

Si ha inoltre:

\[
P(X \leq x) = F(x)
\]

Dove $F(x)$ è detta Funzione di Ripartizione della Probabilità.

La F.D.P. e la F.R.P. sono legate dalla relazione:

\[
f(x) = \frac{dF(x)}{dx}
\]

E quindi:

\[
F(x) = \int_{o}^{x} f(x)dx
\]
4. **Variabile Aleatoria Gaussiana**

A seconda del tipo di fenomeno fisico, varie sono le leggi matematiche che possono definire la relativa variabile aleatoria. Una delle funzioni più semplici è quella proposta da GAUSS, la quale fra l’altro è quella più usata per definire le variabili aleatorie che attengono a problemi ingegneristici.

Secondo Gauss la funzione densità di probabilità di una variabile aleatoria (che in questo caso prende il nome di Variabile Aleatoria Gaussiana) è data dall’espressione:

\[
f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^2\right]; \quad -\infty \leq x \leq +\infty
\]

Dove
- \(\mu\) è il valore medio
- \(\sigma\) è la deviazione standard

Nota la F.D.P. osserviamo adesso che è possibile definire la Variabile Aleatoria, infatti, assegnato un qualunque numero reale \(x\) (che esprime lo stato variabile della nostra variabile aleatoria) in corrispondenza di questo valore ho la funzione \(f(x)\) che moltiplicata per \(dx\) mi esprime la probabilità che \(X=x\):

\[P(X = x) = f(x)dx\]

l’areola marcata in figura rappresenta la probabilità che la mia variabile aleatoria assuma proprio il valore \(x\).

Come si evince dalla rappresentazione grafica della funzione \(f(x)\) di una V.A.G. la stessa è simmetrica rispetto l’asse passante per il valore medio \(m\), inoltre vale 0 per \(x = -\infty\) e per \(x = +\infty\).
Osserviamo inoltre che, l’integrale tra $-\infty$ e x della funzione densità di probabilità, ossia la Funzione di Ripartizione della Probabilità (area evidenziata in figura),

$$F(x) = \int_{-\infty}^{x} f(u)du$$

rappresenta la probabilità che X non sia più grande di x:

$$P(X \leq x) = F(x)$$
5. **Teoria Probabilistica e Meccanica delle Strutture**

Nelle rappresentazioni delle teorie probabilistiche alla meccanica delle strutture, per rappresentare i fenomeni con essa connessi, è importante conoscere una o più funzioni che possano descrivere la variabile aleatoria associata.

Tra queste funzioni quella generalmente adottata è la variabile aleatoria gaussiana VAG la quale ad es. esprime bene il lancio di artiglieria, mentre da dei risultati meno precisi, ma accettati dal legislatore, per la prova di schiacciamento dei cubetti di cls.

In questo caso la FDP (funzione densità di probabilità) e la FRP (funzione ripartizione di probabilità) assumono la forma:

\[
 f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right]
\]

\[
 F(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{t - \mu}{\sigma} \right)^2 \right] dt
\]

Le quali rappresentate nel piano cartesiano mostrano l’andamento di cui in figura.

Si osservi che la curva rappresentativa della FDP è simmetrica rispetto all’asse passante per µ, inoltre la distanza del punto di flesso dell’asse mediano vale σ. La VAG è dunque individuabile tramite i due parametri µ e σ.

Assegnato un certo valore \(x \) dello stato variabile,

- l’ordinata che si ha in corrispondenza di \(x \) nel primo diagramma ci esprime la funzione densità \(f(x) \);
- il prodotto \(f(x)dx \) esprime la probabilità che la \(X \) sia compresa tra \(x \) e \(x+dx \):
\[
f(x)dx = P(x \leq X \leq x + dx)
\]
- l’area evidenziata nel diagramma di \(f(x) \) esprime un numero compreso tra 0 e 1, esprime la funzione ripartizione \(F(x) \) e rappresenta la probabilità che \(X \leq x \):
\[
F(x) = P(X \leq x) = p
\]
- l’area rimanente (non evidenziata) esprime ovviamente la probabilità che \(X \geq x \), per cui essendo tutta l’area racchiusa da \(f(x) \) pari ad 1, si ha:
\[
P(X \leq x) + P(X \geq x) = 1
\]

Problema

Data una V.A.G. \(X \), determinare il numero \(a \) tale che la probabilità che \(X < a \) sia pari a \(p \): \(P(X \leq a) = p \)

Soluzione

Notata la funzione densità di probabilità \(f(x) \), risulta:
\[
p = \int_{-\infty}^{a} f(x)dx
\]
la quale è un’equazione integrale nella sola incognita \(a \), risolta la quale si determina il valore di \(a \) tale che \(P(X \leq a) = p \).

Nel caso in cui non conosciamo la tecnica di risoluzione dell’equazione integrale, possiamo procedere per tentativi.

Si fissa un certo valore \(a^* \) e si calcola l’area compresa tra \(-\infty\) ed \(a^* \), se quest’area coincide con \(p \) allora si è trovato il valore di \(a = a^* \), in caso contrario si procede per tentativi diminuendo e/o aumentando \(a^* \) fino a trovare l’area pari a \(p \).

Se invece è nota la funzione ripartizione di probabilità, tramite il suo diagramma si determina subito \(a \), fissando il valore \(p \) nelle ordinate.
6. **Variabile Aleatoria Gaussiana Standardizzata VAGS**

Ai fini computazionali può essere utile operare con la particolare variabile aleatoria gaussiana Z, definita dai parametri:
- valor medio nullo
- deviazione standard unitaria

la quale è nota come Variabile Aleatoria Gaussiana Standardizzata: VAGS. In questo caso, la descrizione della V.A. viene effettuata mediante la FDP:

\[
\phi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right) = \sigma f(x)
\]

in cui \(z\) esprime lo stato variabile della VAGS \(Z\) pari a:

\[
z = \frac{x-\mu}{\sigma}
\]

La relativa FRP è fornita dall’integrale definito:

\[
\Phi(z) = \int_{-\infty}^{z} \phi(t)dt = \sigma F(x)
\]

Problema

Data una V.A.G. \(X\), determinare il valore di \(x\) tale che \(X\) abbia la probabilità \(q\) di non maggiorarlo:

\[P(X \leq x) = q\]

Soluzione

Anziché lavorare con la VAG il problema può risolversi utilizzando la corrispondente VAGS operando un cambiamento di variabile.

La funzione \(\Phi(z) = \int_{-\infty}^{z} \phi(t)dt = \sigma F(x)\), può anche esprimersi mediante la seguente espressione ricavata dal ricercatore americano Abramonis:

\[
\Phi(z) = 1 - \phi(z) \sum_{i=1}^{5} b_i \cdot t^i
\]

Dove:

\[
t = \frac{1}{1 + 0,2316419 \cdot z}
\]

\[
b_1 = 0,319381530 \quad b_2 = -0,356563782
\]

\[
b_3 = 1,781477937 \quad b_4 = -1,821255978 \quad b_5 = 1,330274429
\]
Per determinare x, osserviamo che determinando il valore di z tale che Z abbia la probabilità q di non maggiorarlo: $P(Z \leq z) = q$, dalla relazione $z = \frac{x - \mu}{\sigma}$ si ricava: $x = z\sigma + \mu$

Per ricavare z, si osservi che dalla relazione:

$$q = \int_{-\infty}^{z} \phi(t) dt = \Phi(z)$$

utilizzando l’espressione di Abramonis per $\Phi(z)$, si ha:

$$q = 1 - \phi(z) \sum_{i=1}^{5} b_i \cdot t^i = 1 - \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{z^2}{2} \right) \left(b_1 t + b_2 t^2 + b_3 t^3 + b_4 t^4 + b_5 t^5 \right)$$

da cui è possibile ricavare z (per tentativi, vedi esempio par.7).
7. **Frattili – Valori Caratteristici**

Data una V.A. si definisce frattile o percentile di ordine p quel valore dello stato variabile che ha la probabilità p di non essere maggiorato.

Il frattile di ordine 100% è $+\infty$, il frattile di ordine 0 è $-\infty$, il frattile di ordine 0,5 è μ.

Nota la funzione $f(x)$, individuata dalla coppia di parametri (μ, σ), si possono definire i “valori caratteristici” della V.A. introducendo il concetto di:

- frattile inferiore x^-_k
- frattile superiore x^+_k

Entrambi di ordine k, da intendere come quei valori che, rispettivamente hanno la probabilità P_k assegnata di essere “minorato” il primo oppure “maggiorato” il secondo.

Il Frattile Inferiore x^-_k di ordine k, cioè quel particolare valore dello stato variabile che ha la probabilità p_k di non essere maggiorato, è pertanto quel particolare valore dello stato variabile che soddisfa la condizione:

$$ p_k = P(X \leq x^-_k) = F(x^-_k) = \int_{-\infty}^{x^-_k} f(x)dx $$

Il Frattile Superiore x^+_k di ordine k, cioè quel particolare valore dello stato variabile che ha la probabilità p_k di essere maggiorato, è pertanto quel particolare valore dello stato variabile che soddisfa la condizione:

$$ p_k = P(X \geq x^+_k) = F(x^+_k) = \int_{x^+_k}^{\infty} f(x)dx $$

Per determinare il frattile superiore osserviamo inoltre che essendo:

$$ \int_{-\infty}^{x^+_k} f(x)dx + \int_{x^-_k}^{\infty} f(x)dx = 1 $$

Risulta:

$$ p_k = \int_{x^-_k}^{\infty} f(x)dx = 1 - \int_{-\infty}^{x^-_k} f(x)dx = 1 - F(x^-_k) $$
Dalla precedente relazione si ha inoltre:

\[1 - p_k = \int_{-\infty}^{x_k} f(x)dx = P(X \leq x_k^+) \]

La quale ci indica che il frattile superiore di una V.A. può essere preso come il frattile inferiore della probabilità complementare \((1-p_k)\) assegnata.

ESEMPIO

Calcolo del frattile di ordine \(q\) di una V.A. descritta da una legge gaussiana caratterizzata dai parametri assegnati \((\mu, \sigma)\).

Per risolvere il problema dobbiamo determinare quel valore \(x_q\) tale che:

\[P(X \leq x_q) = q \]

e ciò può farsi risolvendo l’equazione integrale:

\[q = \int_{-\infty}^{x_q} f(x)dx \]

essendo:

\[f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2 \right] \]

Anziché risolvere l’equazione integrale, osserviamo però che sfruttando la legge della VAGS possiamo risolvere il problema risolvendo un’equazione algebrica.

A tale scopo, osserviamo che effettuato il cambiamento di variabile:

\[z = \frac{x-\mu}{\sigma} \]

essendo:

\[dz = \frac{1}{\sigma} dx \quad \text{e quindi} \quad dx = \sigma dz \]

\[f(x) = \frac{1}{\sigma} \phi(z) \]

\[\phi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2} \right) = \sigma f(x) \]

Si ha:

\[q = \int_{-\infty}^{x_q} f(x)dx = \int_{-\infty}^{z_q} \frac{1}{\sigma} \phi(z)\sigma dz = \int_{-\infty}^{z_q} \phi(z)dz = \Phi(z_q) \]

Da cui, posto

\[\Psi(z_q) = \phi(z_q) \sum_{i=1}^{5} b_i \cdot t^i \]
ed essendo:

\[\Phi(z_q) = 1 - \phi(z_q) \sum_{i=1}^{s} b_i \cdot t^i \]

Risulta:

\[q = 1 - \Psi(z_q) \]

La quale è un’equazione algebrica non lineare, semplice da risolvere in quanto \(\Psi(z_q) \) è una funzione a un sol valore.

Se riportiamo in un diagramma nelle ascisse il valore di \(z \) e nelle ordinate il valore di \(\Psi(z_q) \), si può procedere nel seguente modo:

- si fissa l’ordinata \(1 - q = \Psi(z_q) \)
- si fissa un valore di tentativo \(z_q^1 \) si calcola il valore di \(\Psi(z_q^1) \)
- se il valore di \(\Psi(z_q^1) \) è minore di \(1-q \), si fissa un’altro valore di tentativo \(z_q^2 \) e si calcola il valore di \(\Psi(z_q^2) \)
- se si trova che il valore di \(\Psi(z_q^2) \) è maggiore di \(1-q \), è sufficiente unire i due valori trovati e si ottiene il valore di \(z_q \).

Noto \(z_q \), dalla \(z = (x - \mu)/\sigma \) si ricava anche \(x_q \), che si può mettere nella formula standard:

\[x_q = \mu + z_q \sigma \]

E’ immediato riconoscere che la funzione \(\Phi(z) \) gode delle proprietà:

\[\Phi(-z) = 1 - \Phi(z) \quad \Phi(0) = \frac{1}{2} \]

per cui i frattili inferiore e superiore di una VAG possono mettersi nella forma:

\[
\begin{align*}
 x_k^- &= \mu + z_k \sigma \\
 x_k^+ &= \mu - z_k \sigma
\end{align*}
\]

In particolare osserviamo che per \(q=k=5\% \), risulta \(z_{k}=-1,645 \) per cui, il frattile inferiore e superiore di ordine 5% sono:

\[
\begin{align*}
 x_k^- &= \mu - 1,645\sigma \\
 x_k^+ &= \mu + 1,645\sigma
\end{align*}
\]
8. **Metodo Semiprobabilistico**

Nel metodo semiprobabilistico o metodo probabilistico di 1° livello, data l’aleatorietà delle azioni e delle resistenze, le stesse vengono rappresentate come delle VAG.

Nell’eseguire le verifiche strutturali, però le stesse non entrano in gioco con le relative Funzioni (FDP o FRP) e neanche con i parametri rappresentativi delle stesse μ e σ, ma entrano in gioco con i rispettivi valori caratteristici.

8.1. Valore Caratteristico delle Resistenze

Il Valore Caratteristico delle resistenze è il frattile inferiore di ordine 5% della competente distribuzione. Per determinare tale valore, si procede nel seguente modo:

Si eseguono un numero sufficiente di prove (ad es. per il cls. N>30) e si determinano i valori:

- **Valor Medio**
 \[\bar{x} = \frac{\sum_{i=1}^{n} x_i}{N} \]

- **Deviazione Standard**
 \[s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} \]

dopo di che, assunti questi valori come stima di m e s si determina la FDP di tipo gaussiano ed infine si determina il valore caratteristico risolvendo il problema:

\[P(X \leq x_k^-) = 0.05 \]

il quale come sappiamo è dato da:

\[x_k^- = \mu - k\sigma \]

dove $k=1.645$.

In particolare, indichiamo con:

- f_{ck} la resistenza caratteristica (k) nel conglomerato misurata su un provino cilindrico;
- R_{ck} la resistenza caratteristica (k) nel conglomerato misurata su un provino cubico;
- f_{yk} la resistenza caratteristica dell’acciaio al limite di snervamento;

8.2. Valore Caratteristico delle Azioni

Il Valore Caratteristico delle azioni è:

- il frattile di ordine 95% della competente distribuzione (indicato con Fk) se a svantaggio della sicurezza;
- il frattile di ordine 5% della competente distribuzione se a vantaggio della sicurezza;
8.3. D.M. 14/01/2008

Si riporta integralmente quanto indicato nel D.M. 2008, per ciò che attiene alle Resistenze dei Materiali e strutturale.

8.3.1. Valori di Calcolo delle Resistenze dei Materiali

8.3.1.1. Resistenze di calcolo dei materiali (art. 4.1.2.1.1)

In accordo con il Cap. 11, le resistenze di calcolo \(f_d \) indicano le resistenze dei materiali, calcestruzzo ed acciaio, ottenute mediante l’espressione:

\[
f_d = f_k / \gamma_M
\]

(4.1.3)

dove:

- \(f_k \) sono le resistenze caratteristiche del materiale;
- \(\gamma_M \) sono i coefficienti parziali per le resistenze, comprensivi delle incertezze del modello e della geometria, che possono variare in funzione del materiale, della situazione di progetto e della particolare verifica in esame.

8.3.1.2. Resistenza di calcolo a compressione del calcestruzzo

Per il calcestruzzo la resistenza di calcolo a compressione, \(f_{cd} \), è:

\[
f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_C
\]

(4.1.4)

dove:

- \(\alpha_{cc} \) è il coefficiente riduttivo per le resistenze di lunga durata;
- \(\gamma_C \) è il coefficiente parziale di sicurezza relativo al calcestruzzo;
- \(f_{ck} \) è la resistenza caratteristica cilindrica a compressione del calcestruzzo a 28 giorni.

Il coefficiente \(\gamma_C \) è pari ad 1,5; Il coefficiente \(\alpha_{cc} \) è pari a 0,85.

Nel caso di elementi piani (solette, pareti, ...) gettati in opera con calcestruzzi ordinari e con spessori minori di 50 mm, la resistenza di calcolo a compressione va ridotta a 0,80\(f_{cd} \).

Il coefficiente \(\gamma_C \) può essere ridotto da 1,5 a 1,4 per produzioni continuative di elementi o strutture, soggette a controllo continuativo del calcestruzzo dal quale risulti un coefficiente di variazione (rapporto tra scarto quadratico medio e valor medio) della resistenza non superiore al 10%. Le suddette produzioni devono essere inserite in un sistema di qualità di cui al § 11.8.3.

8.3.1.3. Resistenza di calcolo a trazione del calcestruzzo

La resistenza di calcolo a trazione, \(f_{ctd} \), vale:

\[
f_{ctd} = f_{ctk} / \gamma_C
\]

(4.1.5)

dove:

- \(\gamma_C \) è il coefficiente parziale di sicurezza relativo al calcestruzzo già definito al § 4.1.2.1.1.1;
- \(f_{ctk} \) è la resistenza caratteristica a trazione del calcestruzzo (§ 11.2.10.2).

Nel caso di elementi piani (solette, pareti, ...) gettati in opera con calcestruzzi ordinari e con spessori minori di 50 mm, la resistenza di calcolo a trazione va ridotta a 0,80\(f_{ctd} \).

Il coefficiente \(\gamma_C \) può essere ridotto, da 1,5 a 1,4 nei casi specificati al § 4.1.2.1.1.1.
8.3.1.4. Resistenza di calcolo dell’acciaio

La resistenza di calcolo dell’acciaio f_{yd} è riferita alla tensione di snervamento ed il suo valore è dato da:

$$ f_{yd} = f_{yk} / \gamma_S \quad (4.1.6) $$

dove:
- γ_S è il coefficiente parziale di sicurezza relativo all’acciaio;
- f_{yk} per armatura ordinaria è la tensione caratteristica di snervamento dell’acciaio (v. § 11.3.2), per armature da precompressione è la tensione convenzionale caratteristica di snervamento data, a seconda del tipo di rodotto, da $f_{p0.1k}$ (barre), $f_{p(0,1)k}$ (fili), $f_{p(1)k}$ (trefoli e trecce); si veda in proposito la Tab. 11.3.VII.

Il coefficiente γ_S assume sempre, per tutti i tipi di acciaio, il valore 1,15.

8.3.1.5. Tensione tangenziale di aderenza acciaio-calcestruzzo

La resistenza tangenziale di aderenza di calcolo f_{bd} vale:

$$ f_{bd} = f_{bk} / \gamma_C \quad (4.1.7) $$

dove:
- γ_C è il coefficiente parziale di sicurezza relativo al calcestruzzo, pari a 1,5;
- f_{bk} è la resistenza tangenziale caratteristica di aderenza data da:

$$ f_{bk} = 2,25 \cdot \eta \cdot f_{ck} \quad (4.1.8) $$

in cui
- $\eta = 1,0$ per barre di diametro $\varnothing \leq 32$ mm
- $\eta = (132 - \varnothing)/100$ per barre di diametro superiore.

Nel caso di armature molto addensate o ancoraggi in zona di calcestruzzo teso, la resistenza di aderenza va ridotta dividendo almeno per 1,5.

8.3.2. Resistenza a sforzo normale e flessione (elementi monodimensionali)

4.1.2.1.2.1 Ipotesi di base

Senza escludere specifici approfondimenti, necessari in particolare nel caso di elementi costituiti da calcestruzzo di classe di resistenza superiore a C45/55, per la valutazione della resistenza ultima delle sezioni di elementi monodimensionali nei confronti di sforzo normale e flessione, si adotteranno le seguenti ipotesi:

- conservazione delle sezioni piane;
- perfetta aderenza tra acciaio e calcestruzzo;
- resistenza a trazione del calcestruzzo nulla;
- rottura del calcestruzzo determinata dal raggiungimento della sua capacità deformativa ultima a compressione;
- rottura dell’armatura tesa determinata dal raggiungimento della sua capacità deformativa ultima;
- deformazione iniziale dell’armatura di precompressione considerata nelle relazioni di congruenza della sezione.

Le tensioni nel calcestruzzo e nell’armatura si dedurranno, a partire dalle deformazioni, utilizzando i rispettivi diagrammi tensione-deformazione.

4.1.2.1.2.2 Diagrammi di calcolo tensione-deformazione del calcestruzzo

Per il diagramma tensione-deformazione del calcestruzzo è possibile adottare opportuni modelli rappresentativi del reale comportamento del materiale, modelli definiti in base alla resistenza di calcolo f_{cd} ed alla deformazione ultima ε_{cu}.
In Fig. 4.1.1 sono rappresentati i modelli $\sigma - \varepsilon$ per il calcestruzzo: (a) parabola-rettangolo; (b) triangolo-rettangolo; (c) rettangolo (stress block). In particolare, per le classi di resistenza pari o inferiore a C50/60 si può porre:

$$\varepsilon_{c2} = 0,20\%$$
$$\varepsilon_{cu} = 0,35\%$$
$$\varepsilon_{c3} = 0,175\%$$
$$\varepsilon_{c4} = 0,07\%$$

Per le classi di resistenza superiore a C50/60 si può porre:

$$\varepsilon_{c2} = 0,20\% + 0,0085\%(f_{ck} - 50)^{0.53}$$
$$\varepsilon_{cu} = 0,26\% + 3,5\% \left[\frac{90 - f_{ck}}{100}\right]$$
$$\varepsilon_{c3} = 0,175\% + 0,055\% \left[\frac{f_{ck} - 50}{40}\right]$$

purché si adottino opportune limitazioni quando si usa il modello (c).

Per sezioni o parti di sezioni soggette a distribuzioni di tensione di compressione approssimativamente uniformi, si assume per la deformazione ultima a rottura il valore ε_{c2} anziché ε_{cu}.

4.1.2.1.2.3 Diagrammi di calcolo tensione-deformazione dell’acciaio

Per il diagramma tensione-deformazione dell’acciaio è possibile adottare opportuni modelli rappresentativi del reale comportamento del materiale, modelli definiti in base al valore di calcolo $\varepsilon_{ud} = 0,9\varepsilon_{uk}$ ($\varepsilon_{uk} = (Agt)^{k}$) della deformazione uniforme ultima, al valore di calcolo della tensione di snervamento f_{yd} ed al rapporto di sovraresistenza $k = (f_t / f_y)^{k}$ (Tab. 11.3.Ia-b).

In Fig. 4.1.2 sono rappresentati i modelli $\sigma - \varepsilon$ per l’acciaio: (a) bilineare finito con incrudimento; (b) elasto-perfettamente plastico indefinito.
4.1.2.1.2.4 Analisi della sezione
Con riferimento alla sezione pressoinflessa, rappresentata in Fig. 4.1.3

assieme ai diagrammi di deformazione e di sforzo così come dedotti dalle ipotesi e dai modelli \(\sigma - \varepsilon \) di cui nei punti precedenti, la verifica di resistenza (SLU) si esegue controllando che:

\[
M_{Rd} = M_{Rd} (N_{Ed}) \geq M_{Ed}
\]

dove
- \(M_{Rd} \) è il valore di calcolo del momento resistente corrispondente a \(N_{Ed} \);
- \(N_{Ed} \) è il valore di calcolo della componente assiale (sforzo normale) dell’azione;
- \(M_{Ed} \) è il valore di calcolo della componente flettente dell’azione.

Nel caso di pilastri soggetti a compressione assiale, si deve comunque assumere una componente flettente dello sforzo \(M_{Ed} = e \cdot N_{Ed} \) con eccentricità \(e \) pari almeno a \(0,05h \geq 20\text{mm} \) (con \(h \) altezza della sezione).

Nel caso di pressoflessione deviata la verifica della sezione può essere posta nella forma

\[
\left(\frac{M_{Ed}}{M_{Rd}} \right)^{\alpha} + \left(\frac{M_{Ed}}{M_{Rzd}} \right)^{\alpha} \leq 1
\]

(4.1.10)

dove
- \(M_{Ed}, M_{Ed} \) sono i valori di calcolo delle due componenti di flessione retta dell’azione attorno agli assi \(y \) e \(z \);
- \(M_{Ryd}, M_{Rzd} \) sono i valori di calcolo dei momenti resistenti di pressoflessione retta corrispondenti a \(N_{Ed} \) valutati separatamente attorno agli assi \(y \) e \(z \).

L’esponente \(\alpha \) può dedursi in funzione della geometria della sezione e dei parametri

\[
\nu = N_{Ed}/N_{Rcd}
\]
\[
\omega = A_{c} \cdot f_{yd} / N_{Rcd}
\]

(4.1.11) (4.1.12)

con \(N_{Rcd} = A_{c} \cdot f_{cd} \).

In mancanza di una specifica valutazione, può porsi cautelativamente \(\alpha = 1 \).

8.3.3. Resistenze nei confronti di sollecitazioni taglianti

Senza escludere specifici approfondimenti, necessari in particolare nel caso di elementi costituiti da calcestruzzo di classe di resistenza superiore a C45/55, per la valutazione delle resistenze ultime di
elementi monodimensionali nei confronti di sollecitazioni taglianti, si deve considerare quanto segue.

4.1.2.1.3.1 Elementi senza armature trasversali resistenti a taglio
È consentito l’impiego di solai, piastre e membrature a comportamento analogo, sprovviste di armature trasversali resistenti a taglio. La resistenza a taglio V_{Ed} di tali elementi deve essere valutata, utilizzando formule di comprovata affidabilità, sulla base della resistenza a trazione del calcestruzzo.

La verifica di resistenza (SLU) si pone con

$$V_{Rd} \geq V_{Ed}$$

(4.1.13)

dove V_{Ed} è il valore di calcolo dello sforzo di taglio agente.

Con riferimento all’elemento fessurato da momento flettente, la resistenza al taglio si valuta con

$$V_{Rd} = \left\{ 0,18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0,15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \geq (V_{min} + 0,15 \cdot \sigma_{cp}) \cdot b_w d$$

(4.1.14)

de dove

- d è l’altezza utile della sezione (in mm);
- $\rho_1 = A_{sl} / (b_w \cdot d)$ è il rapporto geometrico di armatura longitudinale ($\leq 0,02$);
- $\sigma_{cp} = N_{Ed} / A_c$ è la tensione media di compressione nella sezione ($\leq 0,2 f_{cd}$);
- b_w è la larghezza minima della sezione (in mm).

Nel caso di elementi in cemento armato precompresso disposti in semplice appoggio, nelle zone non fessurate da momento flettente (con tensioni di trazione non superiori a f_{ctd}) la resistenza può valutarsi, in via semplificativa, con la formula:

$$V_{Rd} = 0,7 \cdot b_w \cdot d \cdot (f_{cd} + \sigma_{cp} \cdot f_{ctd})^{1/2}.$$

(4.1.15)

In presenza di significativi sforzi di trazione, la resistenza a taglio del calcestruzzo è da considerarsi nulla e, in tal caso, non è possibile adottare elementi sprovvisti di armatura trasversale.

Le armature longitudinali, oltre ad assorbire gli sforzi conseguenti alle sollecitazioni di flessione, devono assorbire quegli provolti dal taglio dovuti all’inclinazione delle fessure rispetto all’asse della trave, inclinazione assunta pari a 45°. In particolare, in corrispondenza degli appoggi, le armature longitudinali devono assorbire uno sforzo pari al taglio sull’appoggio.

4.1.2.1.3.2 Elementi con armature trasversali resistenti al taglio
La resistenza a taglio V_{Ed} di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell’ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d’anima inclinati. L’inclinazione θ dei puntoni di calcestruzzo rispetto all’asse della trave deve rispettare i limiti seguenti:

$$1 \leq \text{ctg} \theta \leq 2,5$$

(4.1.16)

La verifica di resistenza (SLU) si pone con

$$V_{Rd} \geq V_{Ed}$$

(4.1.17)

dove V_{Ed} è il valore di calcolo dello sforzo di taglio agente.

Con riferimento all’armatura trasversale, la resistenza di calcolo a “taglio trazione” si calcola con:

$$V_{Rd} = 0,9 \cdot A_{2w} \cdot f_{yd} \cdot (\text{ctg} \alpha + \text{ctg} \theta) \cdot \sin \alpha$$

(4.1.18)

Con riferimento al calcestruzzo d’anima, la resistenza di calcolo a “taglio compressione” si calcola con:

$$V_{Rd} = 0,9 \cdot b_w \cdot \alpha_\gamma \cdot f_{cd} \cdot (\text{ctg} \alpha + \text{ctg} \theta) / (1 + \text{ctg}^2 \theta)$$

(4.1.19)

La resistenza al taglio della trave è la minore delle due sopra definite.
\[V_{Rd} = \min (V_{Rsd}, V_{Rcd}) \]

(4.1.20)
dove \(d, b_w \) e \(\sigma_{cp} \) hanno il significato già visto in § 4.1.2.1.3.1. e inoltre si è posto:

- \(A_{sw} \) area dell’armatura trasversale;
- \(s \) interasse tra due armature trasversali consecutive;
- \(\alpha \) angolo di inclinazione dell’armatura trasversale rispetto all’asse della trave;
- \(f'_{cd} \) resistenza a compressione ridotta del calcestruzzo d’anima (\(f'_{cd} = 0.5 \cdot f_{cd} \));
- \(\alpha_c \) coefficiente maggiorativo pari a 1 per membrature non compresse
 \[1 + \sigma_{cp}/f_{cd} \] per \(0 \leq \sigma_{cp} < 0.25 \cdot f_{cd} \)
 \[1.25 \] per \(0.25 \cdot f_{cd} \leq \sigma_{cp} \leq 0.5 \cdot f_{cd} \)
 \[2.5(1 - \sigma_{cp}/f_{cd}) \] per \(0.5 \cdot f_{cd} < \sigma_{cp} < f_{cd} \)

In presenza di significativo sforzo assiale, ad esempio conseguente alla precompressione, si dovrà aggiungere la limitazione:

\[(\cotg \theta_i \leq \cotg \theta) \]

(4.1.21)
dove \(\theta_i \) è l’angolo di inclinazione della prima fessurazione ricavato da \(\cotg \theta_i = \tau / \sigma_i \) mentre \(\tau \) e \(\sigma_i \) sono rispettivamente la tensione tangenziale e la tensione principale di trazione sulla corda baricentrica della sezione intesa interamente reagente.

Le armature longitudinali, dimensionate in base alle sollecitazioni flessionali, dovranno essere prolungate di una misura pari a

\[a_i = 0.9 \cdot d \cdot (\cotg \theta - \cotg \alpha) / 2 \geq 0 \]

(4.1.22)
9. **STATI LIMITE PER LE TRAVI**

Le ipotesi fatte per la determinazione dello stato limite nella sezione degli elementi monodimensionali (travi, pilastri) sono quelle di cui all’art. 4.1.2.1.2.1 del DM.2008 sopra riportate.

Ed esattamente:

- **conservazione delle sezioni piane**
 le sezioni della trave rimangono piane fino a rottura, il diagramma delle deformazioni nella sezione si conserva rettilineo;

- **perfetta aderenza tra acciaio e calcestruzzo**
 esiste perfetta aderenza tra conglomerato e acciaio per cui le armature subiscono la stessa deformazione della fibra di conglomerato adiacente;

- **resistenza a trazione del calcestruzzo nulla**
 il conglomerato teso non si considera resistente;

- **rottura del calcestruzzo determinata dal raggiungimento della sua capacità deformativa ultima a compressione**
 ipotizzando che il modello σ-ε per il calcestruzzo sia quello di parabola-rettangolo, le massime deformazioni del conglomerato si assumono pari a $\varepsilon_{cu}=0,35\%$ nei casi di flessione semplice e composta, retta e deviata con asse neutro reale, e variabili tra $\varepsilon_{c2}=0,20\%$ ed $\varepsilon_{cu}=0,35\%$ quando l’asse neutro, esterno alla sezione, tende all’infinito;

- **rottura dell’armatura tesa determinata dal raggiungimento della sua capacità deformativa ultima**
 la deformazione massima (in valore assoluto), nell’armatura tesa in acciaio a durezza naturale impiegato nel c.a. ordinario si assume pari a: $\varepsilon_{ud}=0,01$ (1%).
9.1. **Stato Limite Ultimo per Sforzo Normale e Flessione**

Tra gli stati limite ulteriori per sollecitazioni che generano TENSIONI NORMALI vediamo il caso di una sezione in c.a. a doppia armatura e di forma qualsiasi, sottoposta ad uno stato di sollecitazione composta di sforzo normale e flessione.

Lo stato di deformazione della sezione, per l’ipotesi di conservazione delle sezioni piane, viene rappresentato, nel piano delle sollecitazioni da una retta strettamente dipendente dal valore attuale delle caratteristiche della sollecitazione composta di sforzo normale e flessione: (M,N).

Tale stato di deformazione è completamente determinato una volta noti \((\varepsilon_c, \chi)\) ossia la deformazione al lembo superiore e l’angolo di cui è inclinata tale retta, oppure \((\varepsilon_c, x_n)\) ossia la deformazione al lembo superiore e la posizione dell’asse neutro.

Tra tutte le deformazioni possibili nella sezione, si possono estrarre quelle, più particolari, che si presentano in concomitanza con la crisi della sezione stessa.

Detta crisi, peraltro definita in modo convenzionale, si può manifestare secondo uno dei seguenti meccanismi:

1. Cedimento delle armature tese, in assenza di contributo alla resistenza del conglomerato, in quanto sollecitato a trazione;

2. Cedimento delle armature tese con tensioni nel conglomerato compreso, minori od al più eguali, al valore \(f_{cd} = \alpha_{cc} f_{ck} / \gamma_c\) cui si associa (convenzionalmente) lo schiacciamento del conglomerato compreso;

3. Contemporaneo cedimento delle armature tese e schiacciamento del conglomerato compreso;

4. Schiacciamento del conglomerato compreso, con l’acciaio teso in campo elastico;

5. Schiacciamento del conglomerato per flessione, con le armature tutte compresse;

6. Schiacciamento del conglomerato per pressione centrata.
I possibili campi di deformazione della sezione, ciascuno associato ad uno (ed uno solo) dei meccanismi di crisi sopra elencati, possono essere sinteticamente rappresentati in figura da rette che devono appartenere rispettivamente ai fasci di sostegno A, B o C, con le seguenti limitazioni:

Fascio A
tutte le rette individuate dai punti \((A,X)\) con \(X\) di coordinate \((x_n,0)\), purché \(x_n\) sia compreso nell’intervallo

\[-∞ \leq x_n \leq x_B\]

Ossia le rette comprese tra la verticale passante per \(A\) (la quale rappresenta uno stato di deformazione di trazione costante pari all’ 1%) e la congiungente \(AB\) (la quale rappresenta uno stato di deformazione in cui la crisi si ha sia nell’acciaio che nel calcestruzzo).

Il valore di \(x_B\) può determinarsi dalla relazione:

\[
\frac{\varepsilon_{cu} + \varepsilon_{ud}}{\varepsilon_{cu}} = \frac{x_B}{x_B}
\]

Da cui:

\[
x_B = \frac{d \cdot \varepsilon_{cu}}{\varepsilon_{cu} + \varepsilon_{ud}} = \frac{0.35}{1.35} \cdot d = 0.259 \cdot d
\]

Fascio B
tutte le rette individuate dai punti \((B,X)\) con \(X\) di coordinate \((x_n,0)\), purché \(x_n\) sia compreso nell’intervallo

\[x_B \leq x_n \leq d\]

Fascio C
tutte le rette individuate dai punti \((C,X)\) con \(X\) di coordinate \((x_n,0)\), purché \(x_n\) sia compreso nell’intervallo

\[d \leq x_n \leq ∞\]

Per converso, qualunque altra deformazione possibile che non rientri tra quelle sopra definite non è associabile ad un qualsivoglia stato limite ultimo o di collasso (convenzionale) della sezione.

Per una sezione assegnata è rilevante determinare, in corrispondenza di ogni distribuzione di deformazioni associata ad un meccanismo di collasso, la coppia di grandezze:

\((M_{RD}, N_{RD})\)
che esprime i valori ultimi (di calcolo) delle sollecitazioni resistenti, legate con la particolare distribuzione di
deformazioni considerata.

Nel piano cartesiano N,M di tali caratteristiche, limitando la trattazione al caso di M>0 (il caso M<0 può
essere trattato analogamente invertendo As con A’s), il luogo dei punti di coordinate \((N_R, M_R)\)
rappresentativi di tutti i possibili stati ultimi della
sezione, è individuato da una curva aperta, che
volge la propria concavità verso l’origine degli
assi.

Essa delimita con l’asse delle ascisse una regione
\(\Omega\) in cui esistono tutte le possibili coppie \((N,M)\)
relative a stati di sollecitazione rispettosi della
sicurezza.

La frontiera di \(\Omega\) individua punti dove la sezione
in c.a. è al limite della sicurezza. Ogni punto della frontiera di \(\Omega\) ha coordinate \((N_R, M_R)\).

L’origine degli assi può riguardarsi come punto rappresentativo dello stato di sollecitazione nullo.

La restante parte del semipiano contiene gli stati di sollecitazione impossibili, cioè tali che non possono
essere equilibrati da nessuna distribuzione di tensioni interne che sia anche tale da osservare le limitazioni
imposte dalle leggi costitutive e di sicurezza.

In particolare osserviamo adesso che possono distinguersi sei regioni che individuano i campi omogenei di
deformazione allo stato limite ultimo.

Regione 1

Le rette che contengono il segmento che esprime il diagramma delle deformazioni, appartengono al fascio
avente il punto A come sostegno. In particolare la deformazione al lembo superiore \(\varepsilon_C\) può variare tra i valori
- \(\varepsilon_{UD}\) e 0. La distanza dell’asse neutro dal lembo superiore varia in conseguenza tra \(-\infty\) e 0.

L’armatura al lembo inferiore, tesa, è sottoposta alla massima deformazione consentita e la crisi della sezione
si ha pertanto per cedimento dell’acciaio teso.
Regione 2
Le rette di deformazione appartengono ancora al fascio di sostegno A. La deformazione superiore ε_C può variare tra i valori 0 ed ε_{CU}.
Nella sezione si è in presenza di flessione semplice o composta, senza che venga raggiunta la deformazione massima di calcolo ε_{CU} del conglomerato.
La crisi si ha ancora per cedimento dell’armatura tesa.

Regione 3
Le rette di deformazione appartengono al fascio di sostegno B. La deformazione superiore ε_C è pari ad ε_{CU}, la deformazione nell’acciaio teso può variare tra i valori $-\varepsilon_{ud}$ e $-\varepsilon_{yd}$, per cui lo stesso si trova in campo plastico.
Nella sezione si è in presenza di flessione semplice o composta con la particolarità che il conglomerato e l’acciaio sono utilizzati al massimo delle loro risorse.
La crisi si ha per contemporaneo schiacciamento del conglomerato compresso e cedimento delle armature tese.

Regione 4
Le rette di deformazione appartengono ancora al fascio di sostegno B. La deformazione superiore ε_C è pari ad ε_{CU}, la deformazione nell’acciaio teso può variare tra i valori $-\varepsilon_{yd}$ e 0.
La crisi si ha per schiacciamento del conglomerato compresso mentre l’acciaio è in campo elastico.

Regione 5
Le rette di deformazione appartengono ancora al fascio di sostegno B. Le armature inferiori e superiori della sezione risultano entrambe compresse.
La sollecitazione è di flessione composta e la crisi si ha per schiacciamento del conglomerato compresso.

Regione 6
Le rette di deformazione appartengono al fascio di sostegno C.
Nella sezione si è in presenza di pressione centratà e/o pressoflessione con piccola eccentricità.
La deformazione superiore ε_C può variare tra i valori ε_{c2} ed ε_{CU}.
La crisi si ha per schiacciamento del conglomerato.

Il dominio di sicurezza della sezione è limitato dalla curva di interazione caratterizzata dall’equazione:
\[f(N_R, M_R)=0 \]
in ogni regione è possibile determinare i valori di N ed M per cui si raggiunge lo stato di crisi N_R, M_R sfruttando le relative equazioni di equilibrio e di congruenza.
A tale scopo, osserviamo che, nella letteratura sono esposti vari metodi per la costruzione dei domini di resistenza, ed in genere si trovano vari grafici con ivi rappresentati i domini al variare della percentuale meccanica di armatura $q=A_s f_{yd}/b h f_{cd}$.
Poiché la frontiera del dominio di resistenza M-N è costituita dal luogo dei punti del piano N-M corrispondenti alle coppie di coordinate M (momento flettente) ed N (sforzo normale) che determinano la crisi della sezione.

La verifica può essere condotta nel seguente modo:

- Si costruisce il dominio di resistenza M-N della sezione utilizzando le equazioni di congruenza, di equilibrio alla traslazione e di equilibrio alla rotazione;
- Si considera la coppia M_{ED} ed N_{ED} (momento flettente e sforzo normale) che sollecita la sezione;
- Si riporta sul diagramma il punto di coordinate (N_{ED}, M_{ED});
- Si presentano due possibilità:

 - (N_{ED}, M_{ED}) punto INTERNO al dominio \Rightarrow SEZIONE VERIFICATA
 - (N_{ED}, M_{ED}) punto ESTERNO al dominio \Rightarrow SEZIONE NON VERIFICATA
Negli appunti in oggetto, si vuole riportare un metodo che, sfruttando la tecnologia informatica (Personal computer e software), consenta di costruire velocemente il dominio di resistenza per ogni singola sezione e nel contempo consenta di verificare la stessa. A tale scopo, in una prima fase, si utilizzano le *equazioni di congruenza*, di *equilibrio alla traslazione* e di *equilibrio alla rotazione*, per ogni singola regione al fine di costruire il dominio di resistenza.

9.1.1. Costruzione Dominio Resistenza

Regione 1 $-\infty \leq x_{n} \leq 0$

![Diagramma](image.png)

Equazioni di equilibrio:

\[
\begin{align*}
N_R &= \sigma_s A_s + \sigma_l A_l \\
M_R &= \sigma_s A_s \cdot (x_{g} - d^{'}) - \sigma_l A_l \cdot (x_{l} - d^{'})
\end{align*}
\]

Legame costitutivo Acciaio

\[
\begin{align*}
\varepsilon_s &= \varepsilon_{yd} \Rightarrow \sigma_s &= -f_{yd} \\
\varepsilon_s &= \frac{d - x_{n}}{d - x_{n}} \varepsilon_{yd} \Rightarrow \sigma_s &= \begin{cases}
-E_s \varepsilon_s & \text{per } \varepsilon_s \leq \varepsilon_{yd} \\
-f_{yd} & \text{per } \varepsilon_s > \varepsilon_{yd}
\end{cases}
\end{align*}
\]

(nb. x_{n} è negativo)

Osservazione:

Posto $x_{n,i} = \frac{d \varepsilon_{yd} - d \varepsilon_{yd}}{\varepsilon_{yd} - \varepsilon_{yd}}$ in corrispondenza del quale risulta $\varepsilon_s = \varepsilon_{yd}$ e quindi $\sigma_s = \sigma_l$ al variare di x_{n} da $-\infty$ a $-x_{n,i}$ si ha sempre lo stesso valore di N_R ed M_R, pertanto si può affermare che nella

regione 1 $: -x_{n,i} \leq x_{n} \leq 0$
Regione 2(a) \(0 \leq x_n \leq x_{c2} \)

Equazioni di equilibrio:

\[
N_R = \int_0^x \sigma(x) b(x) dx + \sigma_s A_s + \sigma_A A_s
\]
\[
M_R = \int_0^x \sigma(x) b(x)(x - x) dx + \sigma_s A_s \cdot (x_g - d') - \sigma_A A_s \cdot (x_i - d')
\]

Limite Regione 2(a)-2(b):

\[
x_{c2} = \frac{d \cdot \varepsilon_{c2}}{\varepsilon_{c2} + \varepsilon_{ud}} = \frac{0.20}{1.20} \cdot d = 0.166667 \cdot d
\]

Legame costitutivo Acciaio

\[
\varepsilon_s = \varepsilon_{ud} \quad \Rightarrow \quad \sigma_s = -f_{yd}
\]
\[
\varepsilon_s' = \frac{x_n - d}{d - x_n} \varepsilon_{ud} \quad \Rightarrow \quad \sigma_s' = \begin{cases} -E_s \varepsilon_s' & \text{per } \varepsilon_s' \leq \varepsilon_{yd} \\ -f_{yd} & \text{per } \varepsilon_s' > \varepsilon_{yd} \end{cases}
\]

Legame costitutivo calcestruzzo

\[
\varepsilon = \left(x_n - x \right) \frac{\varepsilon_n}{x_n} = \frac{\left(x_n - x \right)}{(d - x_n)} \varepsilon_{ud} \Rightarrow \frac{\varepsilon}{\varepsilon_{c2}} = \frac{5 \left(x_n - x \right)}{(d - x_n)}
\]

Poiché in tale regione \(x_n \leq x_{c2} \); \(\forall x \leq x_n \rightarrow \varepsilon(x) \leq \varepsilon_{c2} \), si ha

\[
\sigma(x) = f_{cd} \cdot \left[2 \frac{\varepsilon}{\varepsilon_{c2}} - \left(\frac{\varepsilon}{\varepsilon_{c2}} \right)^2 \right]
\]

Dalle equazioni sopra scritte, osserviamo che risulta:

\[
\sigma(x) = 5 \cdot f_{cd} \cdot \left[5 \frac{(x_n - x)^2}{(d - x_n)^2} \right] = \frac{5 f_{cd}}{(d - x_n)^2} \cdot (2(x_n - x)(x_n - x) - 5(x_n - x)^2)
\]
\[
\frac{5f_{cd}}{(d-x_n)^2} \cdot (2dx_n - 2dx - 2x_n^2 + 2x_nx - 5(x_n^2 + x^2 - 2x_nx) = \\
\frac{5f_{cd}}{(d-x_n)^2} \cdot (2dx_n - 2dx - 7x_n^2 + 12x_nx - 5x^2) \\
\]
e quindi:

\[
\int_0^x \sigma(x)dx = \frac{5f_{cd}}{(d-x_n)^2} \cdot \left[2dx_n x - \frac{2dx^2}{2} - 7x_n^2 x + \frac{12x_nx^2}{2} - \frac{5x^3}{3} \right]_0^x = \\
\frac{5f_{cd}}{(d-x_n)^2} \cdot \left[2dx_n^2 - dx_n^2 - 7x_n^3 + 6x_n^3 - \frac{5x_n^4}{3} \right] = \frac{5f_{cd}}{(d-x_n)^2} \cdot \left[dx_n^2 - \frac{8}{3} x_n^3 \right] = \\
\frac{5f_{cd}}{3(d-x_n)^2} \cdot \left[3dx_n^2 - 8x_n^3 \right] \\
\int_0^x \sigma(x) \cdot (x_g - x)dx = \int_0^x \sigma(x) \cdot x_g \cdot dx - \int_0^x \sigma(x) \cdot xdx = \\
\frac{5f_{cd}}{(d-x_n)^2} \cdot \left[\int_0^x (2dx_n - 2dx - 7x_n^2 + 12x_nx - 5x^2) \cdot x_g \cdot dx - \int_0^x (2dx_n x - 2dx^2 - 7x_n^2 x + 12x_nx^2 - 5x^3) \cdot dx \right] = \\
\frac{5f_{cd}}{(d-x_n)^2} \cdot \left[2dx_n x - \frac{2dx^2}{2} - 7x_n^2 x + \frac{12x_nx^2}{2} - \frac{5x^3}{3} \right] x_g - \left[2dx_n x - \frac{2dx^2}{2} - 7x_n^2 x + \frac{12x_nx^2}{2} - \frac{5x^3}{3} \right]_0^x = \\
\frac{5f_{cd}}{(d-x_n)^2} \cdot \left[2dx_n^2 - dx_n^2 - 7x_n^3 + 6x_n^3 - \frac{5x_n^4}{3} \right] x_g - dx_n^3 + \frac{2dx_n^3}{3} + \frac{7x_n^4}{2} - \frac{12x_n^4}{3} + \frac{5x_n^4}{4} = \\
\frac{5f_{cd}}{(d-x_n)^2} \cdot \left[dx_n^2 - \frac{8}{3} x_n^3 \right] x_g - \frac{1}{3} dx_n^3 + \frac{9}{12} x_n^4 = \\
\frac{5f_{cd}}{12(d-x_n)^2} \cdot (12dx_g x_n^2 - 32x_g x_n^3 - 4dx_n^3 + 9x_n^4)
Regione 2(b) \(x_c2 \leq x_n \leq x_h \)

Equazioni di equilibrio:

\[
\begin{align*}
N_R &= \int_0^x \sigma(x) b(x) \, dx + \sigma_s A_s + \sigma_s A_s \\
M_R &= \int_0^x \sigma(x) b(x) (x_g - x) \, dx + \sigma_s' A_s' (x_g - d') - \sigma_s A_s (x_i - d')
\end{align*}
\]

Limite Regione 2(a)-2(b):

\[
x_c2 = \frac{d \cdot c}{c + d} = 0.20 \cdot \frac{d}{1.20} = 0.16667 \cdot d
\]

Limite Regione 2(b)-3:

\[
x_B = \frac{d \cdot c}{c + d} = 0.35 \cdot \frac{d}{1.35} = 0.259259 \cdot d
\]

Legame costitutivo Acciaio

\[
\begin{align*}
\epsilon_s &= \epsilon_{ud} \Rightarrow \sigma_s &= -f_{yd} \\
\epsilon_s' &= \frac{x_n - d'}{d - x_n} \epsilon_{ud} \Rightarrow \sigma_s' &= \begin{cases} -E_s \epsilon_s & \text{per } \epsilon_s \leq \epsilon_{yd} \\
- f_{yd} & \text{per } \epsilon_s > \epsilon_{yd} \end{cases}
\end{align*}
\]

Legame costitutivo calcestruzzo

\[
\begin{align*}
\epsilon &= (x_n - x) \frac{\epsilon_c}{x_n} = (x_n - x) \frac{\epsilon_{ud}}{\epsilon_{c2}} \Rightarrow \frac{\epsilon}{\epsilon_{c2}} &= \frac{5 (x_n - x)}{(d - x_n)} \\
\sigma(x) &= \begin{cases} f_{cd} \left[2 \left(\frac{\epsilon}{\epsilon_{c2}} \right) - \left(\frac{\epsilon}{\epsilon_{c2}} \right)^2 \right] & \text{per } \epsilon \leq \epsilon_{c2} \\
f_{cd} & \text{per } \epsilon_{c2} \leq \epsilon \leq \epsilon_{cu}
\end{cases}
\end{align*}
\]

Osserviamo inoltre che, in tale regione, al variare di \(x \) tra 0 e \(x_{cd} = x_n - (d - x_n) \frac{\epsilon_{cd}}{\epsilon_{ud}} = x_n - 0.20 \cdot (d - x_n) \) risulta \(\epsilon_{c2} \leq \epsilon \leq \epsilon_{cu} \) e quindi \(\sigma(x) = f_{cd} \).

Ossia:
Inoltre, risulta:

\[
\int_{0}^{x_{cd}} \sigma(x) dx = \int_{0}^{x_{cd}} \sigma(x) dx + \int_{x_{cd}}^{x} \sigma(x) dx
\]

\[
= f_{cd} x_{cd} + \frac{5 f_{cd}}{(d - x_{n})^{2}} \left[2dx_{n}x - \frac{2dx^{2}}{2} - 7x_{n}^{3}x + \frac{12x_{n}^{2}x^{2}}{2} - 5 \frac{x^{3}}{3} \right]_{x_{cd}}^{x}
\]

\[
= f_{cd} x_{cd} + \frac{5 f_{cd}}{(d - x_{n})^{2}} \left(2dx_{n}^{2} - dx_{n}^{2} - 7x_{n}^{3} + 6x_{n}^{3} - 5 \frac{x_{n}^{3}}{3} - 2dx_{n}x_{cd} + dx_{cd}^{2} + 7x_{n}^{2}x_{cd} - 6x_{n}x_{cd}^{2} + 5 \frac{x_{cd}^{3}}{3} \right)
\]

\[
= f_{cd} x_{cd} + \frac{5 f_{cd}}{3(d - x_{n})^{2}} \left(3dx_{n}^{2} - 8x_{n}^{3} - 6dx_{n}x_{cd} + 3dx_{cd}^{2} + 21x_{n}^{2}x_{cd} - 18x_{n}x_{cd}^{2} + 5 \frac{x_{cd}^{3}}{3} \right)
\]

\[
\int_{0}^{x_{g}} \sigma(x)(x_{g} - x) dx = \int_{0}^{x_{g}} \sigma(x)(x_{g} - x) dx + \int_{x_{cd}}^{x_{g}} \sigma(x)(x_{g} - x) dx
\]

\[
= \int_{0}^{x_{g}} \sigma(x) x_{g} dx - \int_{0}^{x_{cd}} \sigma(x) x dx + \int_{x_{cd}}^{x_{g}} \sigma(x) x_{g} dx - \int_{x_{cd}}^{x} \sigma(x) x dx
\]

\[
= f_{cd} x_{g} x_{cd} - f_{cd} \frac{x_{cd}^{2}}{2} + \frac{5 f_{cd}}{(d - x_{n})^{2}} \int_{x_{cd}}^{x} \left(2dx_{n}x - 2dx^{2} - 7x_{n}x + 5 \frac{x^{3}}{3} \right) x_{g} dx +
\]

\[
- \frac{5 f_{cd}}{(d - x_{n})^{2}} \int_{x_{cd}}^{x} \left(2dx_{n}x - 2dx^{2} - 7x_{n}^{2}x + 12x_{n}x^{2} - 5 \frac{x^{3}}{3} \right) dx
\]

\[
= f_{cd} x_{g} x_{cd} - f_{cd} \frac{x_{cd}^{2}}{2} + \frac{5 f_{cd}}{(d - x_{n})^{2}} \left[2dx_{n}x - \frac{2dx^{2}}{2} - 7x_{n}^{2}x + \frac{12x_{n}x^{2}}{2} - 5 \frac{x^{3}}{3} \right]_{x_{cd}}^{x}
\]

\[
- \frac{5 f_{cd}}{(d - x_{n})^{2}} \left[2dx_{n}x^{2} - \frac{2dx^{3}}{3} - 7x_{n}^{2}x^{2} + \frac{12x_{n}x^{3}}{3} - 5 \frac{x^{4}}{4} \right]_{x_{cd}}^{x}
\]
\[
= f_{cd} x_c x_{cd} - f_{cd} \frac{x_{cd}^2}{2} + \frac{5f_{cd}}{(d-x_n)^2} \left(2dx_n^2 - dx_n^2 - 7x_n^3 + 6x_n^3 - 5x_n^3 = x_g + \\
- \frac{5f_{cd}}{(d-x_n)^2} \left(2dx_n x_{cd} - dx_n^2 - 7x_n x_{cd} + 6x_n x_{cd} - 5x_{cd}^3 \right) x_g + \\
- \frac{5f_{cd}}{(d-x_n)^2} \left[\left(dx_n^3 - \frac{2dx_n^3}{3} - \frac{7x_n^4}{2} + \frac{12x_n^4}{3} - \frac{5x_n^4}{4} \right) - \left(dx_n x_{cd}^3 - \frac{2dx_n x_{cd}^3}{3} - \frac{7x_n x_{cd}^3}{2} + \frac{12x_n x_{cd}^3}{3} - \frac{5x_{cd}^4}{4} \right) \right] = \\
= f_{cd} x_c x_{cd} - f_{cd} \frac{x_{cd}^2}{2} + \frac{5f_{cd}}{(d-x_n)^2} \left[dx_n^3 - \frac{8}{3} x_n^3 - 2dx_n x_{cd} + dx_{cd}^3 + 7x_n x_{cd} - 6x_n x_{cd} + 5x_{cd}^3 \right] x_g + \\
- \frac{5f_{cd}}{(d-x_n)^2} \left[dx_n^3 - \frac{9}{12} x_n^4 - dx_n x_{cd}^3 + \frac{2dx_n x_{cd}^3}{3} + \frac{7x_n x_{cd}^3}{2} - \frac{12x_n x_{cd}^3}{3} + 5x_{cd}^4 \right] = \\
= f_{cd} x_c x_{cd} - f_{cd} \frac{x_{cd}^2}{2} + \frac{5f_{cd}}{(d-x_n)^2} \left[dx_n^3 - \frac{8}{3} x_n^3 - 2dx_n x_{cd} + dx_{cd}^3 + 7x_n x_{cd} - 6x_n x_{cd} + 5x_{cd}^3 \right] x_g + \\
- \frac{5f_{cd}}{12(d-x_n)^2} \left[4dx_n^3 - 9x_n^4 - 12dx_n x_{cd}^3 + 8dx_n x_{cd}^3 + 42x_n x_{cd}^3 - 48x_n x_{cd}^3 + 15x_{cd}^4 \right]
\]
Regione 3 \quad x_b \leq x_n \leq x_{yd}

Equazioni di equilibrio:

\[
\begin{align*}
N_R &= \int_0^{x_g} \sigma(x) b(x) dx + \sigma_x A_x + \sigma_y A_y \\
M_R &= \int_0^{x_g} \sigma(x) b(x)(x_g - x) dx + \sigma_x' A_x' \cdot (x_g - d) - \sigma_x A_x \cdot (x_i - d')
\end{align*}
\]

Limite Regione 2(b)-3:

\[
x_B = \frac{d \cdot \epsilon_{cu}}{\epsilon_{cu} + \epsilon_{ad}} = 0,35 \\
\frac{1,35}{d} = 0,259259 \cdot d
\]

Limite Regione 3-4:

\[
x_{yd} = \frac{d \cdot \epsilon_{cu}}{\epsilon_{cu} + \epsilon_{cd}} \quad \text{(dipendente dal tipo di acciaio)}
\]

Legame costitutivo Acciaio

\[
\begin{align*}
\epsilon_s &\geq \epsilon_{yd} \quad \Rightarrow \quad \sigma_s = -f_{yd} \\
\epsilon_s' &= \frac{x_n - d'}{x_n} \epsilon_{cu} \\
\epsilon_s &= \left\{ \begin{array}{ll}
\epsilon_{yd} & \text{per } \epsilon_s \leq \epsilon_{yd} \\
\frac{f_{yd}}{\epsilon_{cu}} & \text{per } \epsilon_s > \epsilon_{yd}
\end{array} \right.
\end{align*}
\]

Legame costitutivo calcestruzzo

\[
\epsilon = \left(x_n - x \right) \frac{\epsilon_{cu}}{x_n} \Rightarrow \frac{\epsilon}{\epsilon_{c2}} = 1,75 \left(\frac{x_n - x}{x_n} \right)
\]

\[
\sigma(x) = \left\{ \begin{array}{ll}
\frac{f_{cd}}{\epsilon_{c2}} \left[2 \frac{\epsilon}{\epsilon_{c2}} - \left(\frac{\epsilon}{\epsilon_{c2}} \right)^2 \right] & \text{per } \epsilon \leq \epsilon_{c2} \\
\frac{f_{cd}}{\epsilon_{cu}} & \text{per } \epsilon_{c3} \leq \epsilon \leq \epsilon_{cu}
\end{array} \right.
\]

Analogamente a quanto detto per la regione 2(b), nella regione 3, al variare di \(x \) tra 0 e \(x_{cd} = \frac{\epsilon_{cu} - \epsilon_{c2}}{\epsilon_{cu}} x_n \) risulta \(\epsilon_{c2} \leq \epsilon \leq \epsilon_{cu} \) e quindi \(\sigma(x) = f_{cd} \).
ossia:

\[
\sigma(x) = \begin{cases}
1.75 \cdot f_{cd} \cdot \left[2 \cdot \left(\frac{x_n - x}{x_n} \right) - \left(\frac{x_n - x}{x_n} \right)^2 \right] = \frac{1.75 f_{cd}}{x_n^2} \cdot \left(x_n^2 - x^2 \right) & \text{per } x > x_{cd} \\
\frac{1.75 f_{cd}}{x_n^2} \cdot \left(x_n^2 - x^2 \right) & \text{per } x \leq x_{cd}
\end{cases}
\]

Inoltre, risulta:

\[
\int_0^{x_n} \sigma(x) \, dx = \int_0^{x_n} \sigma(x) \, dx + \int_{x_{cd}}^{x_n} \sigma(x) \, dx = f_{cd} x_{cd} + \frac{1.75 f_{cd}}{x_n^2} \cdot \left[x_n^2 x - \frac{x^3}{3} \right]_{x_{cd}}^{x_n} = \]

\[
f_{cd} x_{cd} + \frac{1.75 f_{cd}}{x_n^2} \cdot \left(x_n^3 - x_{cd} x_n^2 + \frac{x_{cd}^3}{3} \right) = f_{cd} x_{cd} + \frac{1.75 f_{cd}}{3 x_n^2} \cdot \left(2 x_n^3 - 3 x_n^2 x_{cd} + x_{cd}^3 \right)
\]

\[
\int_0^{x_g} \sigma(x) \, dx = \int_0^{x_g} \sigma(x) \, dx + \int_{x_{cd}}^{x_g} \sigma(x) \, dx = \int_0^{x_{cd}} \sigma(x) \, dx + \int_{x_{cd}}^{x_g} \sigma(x) \, dx = \]

\[
f_{cd} x_g - f_{cd} \frac{x_{cd}^2}{2} + \frac{1.75 f_{cd}}{x_n^2} \cdot \left[x_n^2 x - \frac{x^3}{3} \right]_{x_{cd}}^{x_g} - \frac{1.75 f_{cd}}{x_n^2} \cdot \left[x_n^2 x - \frac{x^4}{4} \right]_{x_{cd}}^{x_g} = \]

\[
f_{cd} x_g - f_{cd} \frac{x_{cd}^2}{2} + \frac{1.75 f_{cd}}{x_n^2} \cdot \left(x_n^3 - x_{cd} x_n^2 + \frac{x_{cd}^3}{3} \right) x_g - \frac{1.75 f_{cd}}{x_n^2} \cdot \left(\frac{x_n^4}{2} - \frac{x_n^4}{4} - \frac{x_{cd}^2}{2} + \frac{x_{cd}^4}{4} \right) = \]

\[
f_{cd} x_g - f_{cd} \frac{x_{cd}^2}{2} + \frac{1.75 f_{cd}}{x_n^2} \cdot \left(\frac{2}{3} x_n^3 - x_n^2 x_{cd} + \frac{x_{cd}^3}{3} \right) x_g - \frac{1.75 f_{cd}}{x_n^2} \cdot \left(\frac{x_n^4}{4} - \frac{x_n^2 x_{cd}}{2} + \frac{x_{cd}^4}{4} \right) = \]

\[
f_{cd} x_g - f_{cd} \frac{x_{cd}^2}{2} + \frac{1.75 f_{cd}}{3 x_n^2} \cdot \left(2 x_n^3 - 3 x_n^2 x_{cd} + x_{cd}^3 \right) x_g - \frac{1.75 f_{cd}}{4 x_n^2} \cdot \left(x_n^4 - 2 x_n^2 x_{cd}^2 + x_{cd}^4 \right)
\]
Regione 4 \(x_{yd} \leq x_n \leq d \)

Equazioni di equilibrio:

\[
\begin{cases}
N_R = \int_0^x \sigma(x)b(x)dx + \sigma_s A_s + \sigma_A A_s \\
M_R = \int_0^x \sigma(x)b(x)(x-g - x)dx + \sigma_s A_s (x_i - d) - \sigma_s A_s (x_i - d^r)
\end{cases}
\]

Limite Regione 3-4:

\[
x_{yd} = \frac{d \cdot e_{cu}}{e_{cu} + e_{yd}} \quad \text{(dipendente dal tipo di acciaio)}
\]

Limite Regione 4-5:

\[
x_{id} = d
\]

Legame costitutivo Acciaio

\[
\begin{align*}
\sigma_s &= \frac{d - x_n}{x_n} e_{cu} \leq e_{yd} \Rightarrow \sigma_s = -E \varepsilon_s \\
\varepsilon_s &= \frac{x_n - d^r}{x_n} e_{cu} \Rightarrow \sigma_s &= \begin{cases} E \varepsilon_s & \text{per } \varepsilon_s \leq e_{yd} \\
f_{yd} & \text{per } \varepsilon_s > e_{yd} \end{cases}
\end{align*}
\]

Legame costitutivo calcestruzzo

\[
\begin{align*}
\varepsilon &= (x_n - x) \frac{e_{cu}}{x_n} \Rightarrow \frac{\varepsilon}{\varepsilon_{c2}} = 1,75 \frac{(x_n - x)}{x_n} \\
\sigma(x) &= \begin{cases} f_{cd} \left[\frac{2 \varepsilon}{\varepsilon_{c2}} - \left(\frac{\varepsilon}{\varepsilon_{c2}} \right)^2 \right] & \text{per } \varepsilon \leq \varepsilon_{c2} \\
f_{cd} & \text{per } \varepsilon_{c2} \leq \varepsilon \leq \varepsilon_{cu} \end{cases}
\end{align*}
\]
Analogamente a quanto detto per la regione 2(b), nella regione 4, al variare di x tra 0 e $x_{cd} = \frac{\varepsilon_{cu} - \varepsilon_{e2}}{\varepsilon_{cu}} x_n$ risulta $\varepsilon_{e2} \leq \varepsilon \leq \varepsilon_{cu}$ e quindi $\sigma(x) = f_{cd}$.

Ossia:

$$
\sigma(x) = \left\{ \begin{array}{ll}
1.75 \cdot f_{cd} \left[2 \cdot \frac{(x_n - x)}{x_n} - \frac{(x_n - x)^2}{x_n^2} \right] & \text{per } x > x_{cd} \\
\frac{1.75 f_{cd}}{x_n^2} \cdot (x_n^2 - x^2) & \text{per } x \leq x_{cd}
\end{array} \right.
$$

Inoltre, risulta:

$$
\int_0^{x_g} \sigma(x) dx = \int_0^{x_{cd}} \sigma(x) dx + \int_{x_{cd}}^{x_g} \sigma(x) dx = f_{cd} x_{cd} + \frac{1.75 f_{cd}}{3x_n^2} \cdot (2x_n^3 - 3x_n^2 x_{cd} + x_{cd}^3)
$$

$$
\int_0^{x_g} \sigma(x)(x - x_g) dx = \int_0^{x_{cd}} \sigma(x)(x - x_g) dx + \int_{x_{cd}}^{x_g} \sigma(x)(x - x_g) dx =
$$

$$
= f_{cd} x_{cd} x_g - f_{cd} \frac{x_{cd}^2}{2} + \frac{1.75 f_{cd}}{3x_n^2} \cdot (2x_n^3 - 3x_n^2 x_{cd} + x_{cd}^3)x_g - \frac{1.75 f_{cd}}{4x_n^2} \cdot (x_n^4 - 2x_n^2 x_{cd}^2 + x_{cd}^4)
$$
Regione 5 \(x_d \leq x_n \leq H \)

Equazioni di equilibrio:

\[
\begin{align*}
N_R &= \int_0^x \sigma(x)b(x)dx + \sigma_s A_s + \sigma_s A_s \\
M_R &= \int_0^x \sigma(x)b(x)(x_n - x)dx + \sigma_s A_s \cdot (x_n - d) - \sigma_s A_s \cdot (x_n - d')
\end{align*}
\]

Limite Regione 4-5:
\(x_d = d \)

Limite Regione 5-6:
\(x_d = H \)

Legame costitutivo Acciaio

\[
\begin{align*}
\varepsilon_s &= \frac{x_n - d}{x_n} \\
\Rightarrow \quad \sigma_s &= \begin{cases} E \varepsilon_s & \text{per } \varepsilon_s \leq \varepsilon_{yd} \\
f_{yd} & \text{per } \varepsilon_s > \varepsilon_{yd} \end{cases}
\end{align*}
\]

\[
\begin{align*}
\varepsilon' &= \frac{x_n - d'}{x_n} \\
\Rightarrow \quad \sigma' &= \begin{cases} E \varepsilon' & \text{per } \varepsilon_s \leq \varepsilon_{yd} \\
f_{yd} & \text{per } \varepsilon_s > \varepsilon_{yd} \end{cases}
\end{align*}
\]

Legame costitutivo calcestruzzo

\[
\begin{align*}
\varepsilon &= \left(x_n - x \right) \frac{\varepsilon_{cu}}{x_n} \\
\Rightarrow \quad \varepsilon &= 1.75 \left(\frac{x_n - x}{x_n} \right)
\end{align*}
\]

\[
\begin{align*}
\sigma(x) &= \begin{cases} f_{cd} \left[\frac{2 \varepsilon}{\varepsilon_{c2}} - \left(\frac{\varepsilon}{\varepsilon_{c2}} \right)^2 \right] & \text{per } \varepsilon \leq \varepsilon_{c2} \\
f_{cd} & \text{per } \varepsilon_{c2} \leq \varepsilon \leq \varepsilon_{cu} \end{cases}
\end{align*}
\]

Analogamente a quanto detto per la regione 2(b), nella regione 5, al variare di \(x \) tra 0 e \(x_{cd} = \frac{\varepsilon_{cu} - \varepsilon_{c2}}{\varepsilon_{cu}} x_n \)

risulta \(\varepsilon_{c2} \leq \varepsilon \leq \varepsilon_{cu} \) e quindi \(\sigma(x) = f_{cd} \).

ossia:
\[\sigma(x) = \begin{cases} 1,75 \cdot f_{cd} \left[2 \cdot \frac{(x_n - x)}{x_n} - \frac{(x_n - x)^2}{x_n^2} \right] = \frac{1,75 f_{cd}}{x_n^2} \cdot (x_n^2 - x^2) & \text{per } x > x_{cd} \\ f_{cd} & \text{per } x \leq x_{cd} \end{cases} \]

Inoltre, risulta:

\[
\int_0^{x_d} \sigma(x) dx = \int_0^{x_d} \sigma(x) dx + \int_{x_d}^{x} \sigma(x) dx = f_{cd} x_{cd} x_n + \frac{1,75 f_{cd}}{3x_n^2} \cdot (2x_n^3 - 3x_n^2 x_{cd} + x_{cd}^3) \]

\[
\int_0^{x_d} \sigma(x)(x - x) dx = \int_0^{x_d} \sigma(x)(x - x) dx + \int_{x_d}^{x} \sigma(x)(x_{cd} - x) dx = \]

\[
f_{cd} x_{cd} x_n - f_{cd} \frac{x_{cd}^2}{2} + \frac{1,75 f_{cd}}{3x_n^2} \cdot (2x_n^3 - 3x_n^2 x_{cd} + x_{cd}^3) x_n = \frac{1,75 f_{cd}}{4x_n^2} \cdot (x_n^4 - 2x_n^2 x_{cd}^2 + x_{cd}^4) \]
Regione 6 $H \leq x_n \leq \infty$

Equazioni di equilibrio:

Equazioni di equilibrio:

$\begin{align*}
N_R &= \int_0^x (\sigma(x)b(x)dx + \sigma_s A_s + \sigma_s A_s) \\
M_R &= \int_0^x (\sigma(x)b(x)dx + \sigma_s A_s)(x - x') - \sigma_s A_s(x_i - d')
\end{align*}$

Limite Regione 5-6:

$x_d = H$

Legame costitutivo Acciaio

$\varepsilon = \frac{x_d}{x_n} \Rightarrow \sigma_s = \begin{cases}
E_s \varepsilon_r & \text{per } \varepsilon_r \leq \varepsilon_{yd} \\
v_{yd} \varepsilon_r & \text{per } \varepsilon_r > \varepsilon_{yd}
\end{cases}$

Legame costitutivo calcestruzzo

$\varepsilon = \frac{(x_d - x)}{x_n} \Rightarrow \varepsilon = 1.75 \frac{(x_d - x)}{x_n} \Rightarrow \sigma(x) = \begin{cases}
\frac{f_{cd} \varepsilon_{cu}}{\varepsilon_{cd}^2} \left[2 \frac{\varepsilon}{\varepsilon_{cd}^2} - \left(\frac{\varepsilon}{\varepsilon_{cd}} \right) \right] & \text{per } \varepsilon \leq \varepsilon_{cd} \\
\frac{f_{cd}}{\varepsilon_{cd}^2} & \text{per } \varepsilon_{cd} \leq \varepsilon \leq \varepsilon_{cu}
\end{cases}$

Analoga a quanto detto per la regione 2(b), nella regione 6, al variare di x tra 0 e $x_{cd} = \frac{\varepsilon_{cu} - \varepsilon_{cd}^2}{\varepsilon_{cu}^2} x_n$

risulta $\varepsilon_{cd} \leq \varepsilon \leq \varepsilon_{cu}$ e quindi $\sigma(x) = f_{cd}$.

Ossia:
\[
\sigma(x) = \begin{cases}
1.75 \cdot f_{cd} \cdot \left[2 \cdot \frac{(x_n - x)}{x_n} - \frac{(x_n - x)^2}{x_n^2} \right] & \text{per } x > x_{cd} \\
\frac{f_{cd}}{x_n} & \text{per } x \leq x_{cd}
\end{cases}
\]

Inoltre, se \(x_{cd} \geq H \), qualsiasi sia il valore di \(x < H \) risulta sempre \(\sigma(x) = f_{cd} \).

Quindi, per \(x_{cd} < H \):

\[
\int_0^{x_{cd}} \sigma(x)dx = \int_0^{x_{cd}} \sigma(x)dx + \int_{x_{cd}}^{x} \sigma(x)dx = f_{cd}x_{cd} + \frac{1.75f_{cd}}{3x_n^2} \cdot (2x_n^3 - 3x_n^2x_{cd} + x_{cd}^3)
\]

\[
\int_0^{x_{cd}} \sigma(x)(x_{cd} - x)dx = \int_0^{x_{cd}} \sigma(x)(x_{cd} - x)dx + \int_{x_{cd}}^{x} \sigma(x)(x_{cd} - x)dx =
\]

\[
= f_{cd}x_{cd}^2 - f_{cd} \frac{x_{cd}^2}{2} + \frac{1.75f_{cd}}{3x_n^2} \cdot (2x_n^3 - 3x_n^2x_{cd} + x_{cd}^3)x_{cd} - \frac{1.75f_{cd}}{4x_n^3} \cdot (x_n^4 - 2x_n^2x_{cd}^2 + x_{cd}^4)
\]

Per \(x_{cd} \geq H \):

\[
\int_0^{x_{cd}} \sigma(x)dx = \int_0^{x_{cd}} \sigma(x)dx + \int_{x_{cd}}^{x} \sigma(x)dx = f_{cd}H
\]

\[
\int_0^{x_{cd}} \sigma(x)(x_{cd} - x)dx = f_{cd}H \int_0^{x_{cd}} (x_{cd} - x)dx = f_{cd}(x_{cd}H - \frac{H^2}{2})
\]
9.1.2. **Verifica della sezione**

Si osservi adesso che, come indicato all’art. 4.1.2.1.2.4 “Analisi della sezione” del D.M. 2008, con riferimento alla sezione pressoinflessa, rappresentata in Fig. 4.1.3

![Diagram](image_url)

Figura 4.1.3 – Sezione pressoinflessa

assieme ai diagrammi di deformazione e di sforzo così come dedotti dalle ipotesi e dai modelli \(\sigma - \varepsilon\) di cui nei punti precedenti, la verifica di resistenza (SLU) si esegue controllando che:

\[
M_{Rd} = M_{Rd}(N_{Ed}) \geq M_{Ed}
\]

dove
- \(M_{Rd}\) è il valore di calcolo del momento resistente corrispondente a \(N_{Ed}\);
- \(N_{Ed}\) è il valore di calcolo della componente assiale (sforzo normale) dell’azione;
- \(M_{Ed}\) è il valore di calcolo della componente flettente dell’azione.

Indicati con:
- \(N_0\) il valore di calcolo dello sforzo normale resistente, in corrispondenza del primo punto della regione 1: calcolato per \(x_0 = x_{n,i}\)
- \(N_1\) il valore di calcolo dello sforzo normale resistente, in corrispondenza del primo punto della regione 2(a) (corrispondente con il valore di calcolo dello sforzo normale in corrispondenza dell’ultimo punto della regione 1): calcolato per \(x = x_{e2}\)
- Etc.
la verifica può essere condotta nel seguente modo:
- si determina la regione i in cui ricade N_{Ed} confrontando lo stesso con i valori di N_i
- si calcola M_{Rd} utilizzando le equazioni di equilibrio della regione i
- si verifica che risulti $M_{Rd} \geq M_{Ed}$
9.2. **SLU per Sforzo Normale e Flessione sezione Rettangolare**

In particolare, nel caso di sezione rettangolare, essendo \(b(x) = b = \text{cost.} \),

Determinati i valori limite di \(x_n \) tra le varie regioni:

Limite inferiore Regione 1:

\[
\begin{align*}
x_{n,0} &= x_{n,d} = \frac{d \cdot \varepsilon_{ud} - d \cdot \varepsilon_{yd}}{\varepsilon_{ud} - \varepsilon_{yd}} \\
\end{align*}
\]

Limite Regioni 1 – 2(a):

\(x_{n,1} = 0 \)

Limite Regioni 2(a) – 2(b):

\[
\begin{align*}
x_{n,2} &= x_{c2} = \frac{d \cdot \varepsilon_{c2}}{\varepsilon_{c2} + \varepsilon_{ud}} = \frac{0.20}{1.20} \cdot d = 0.166667 \cdot d \\
\end{align*}
\]

Limite Regioni 2(b)–3:

\[
\begin{align*}
x_{n,3} &= x_{c3} = \frac{d \cdot \varepsilon_{cu}}{\varepsilon_{cu} + \varepsilon_{ud}} = \frac{0.35}{1.35} \cdot d = 0.259259 \cdot d \\
\end{align*}
\]

Limite Regioni 3–4:

\[
\begin{align*}
x_{n,4} &= x_{yd} = \frac{d \cdot \varepsilon_{cu}}{\varepsilon_{cu} + \varepsilon_{yd}} \\
\end{align*}
\]

Limite Regioni 4–5:

\(x_{n,5} = d \)

Limite Regioni 5–6:

\(x_{n,6} = H \)

Limite Superiore Regione 6:

\(x_{n,7} \) non definito

Posto:

\[
\begin{align*}
x_{cd} &= \begin{cases}
0.20 \cdot (d - x_{n,i}) & \text{per } i = 3 \quad - \text{Re gione } 2(a) \\
0.15 x_{n,i} & \text{per } i > 3 \quad - \text{Re gioni } 2(b) - 6
\end{cases}
\end{align*}
\]
Calcolati i valori delle tensioni σ'_s e σ_s in corrispondenza dei valori limite, risulta:

$N_0 = \sigma'_{s,0} A_s + \sigma_{s,0} A_s$

$N_1 = \sigma'_{s,1} A_s + \sigma_{s,1} A_s$

$N_2 = b \cdot \frac{5 f_{cd}}{3(d - x_{n,2})^3} \cdot \left[3dx_{n,2}^2 - 8x_{n,2}^3 \right] + \sigma'_{s,2} A_s + \sigma_{s,2} A_s$

$N_3 = b \cdot \left[f_{cd} x_{cd} + \frac{1.75 f_{cd}}{3x_{n,3}^2} \cdot (2x_{n,3}^3 - 3x_{n,3}^2 x_{cd} + x_{cd}^3) \right] + \sigma'_{s,3} A_s + \sigma_{s,3} A_s$

$N_4 = b \cdot \left[f_{cd} x_{cd} + \frac{1.75 f_{cd}}{3x_{n,4}^2} \cdot (2x_{n,4}^3 - 3x_{n,4}^2 x_{cd} + x_{cd}^3) \right] + \sigma'_{s,4} A_s + \sigma_{s,4} A_s$

$N_5 = b \cdot \left[f_{cd} x_{cd} + \frac{1.75 f_{cd}}{3x_{n,5}^2} \cdot (2x_{n,5}^3 - 3x_{n,5}^2 x_{cd} + x_{cd}^3) \right] + \sigma'_{s,5} A_s + \sigma_{s,5} A_s$

$N_6 = b \cdot \left[f_{cd} x_{cd} + \frac{1.75 f_{cd}}{3x_{n,6}^2} \cdot (2x_{n,6}^3 - 3x_{n,6}^2 x_{cd} + x_{cd}^3) \right] + \sigma'_{s,6} A_s + \sigma_{s,6} A_s$
9.2.1. **Dominio di Rottura**

Si può rappresentare graficamente il dominio di rottura, (\(N_R, M_R\)) utilizzando le formule:

Regione 1 \(-x_{n,0} \leq x_n \leq x_{n,1}\)

\[
N_R = \sigma', A_i + \sigma, A_s
\]

\[
M_R = \sigma', A_i \cdot (x_n - d') - \sigma, A_s \cdot (x_n - d')
\]

Regione 2(a) \(x_{n,1} \leq x_n \leq x_{n,2}\)

\[
N_R = b \cdot \left[\frac{5f_{cd}}{3(d-x_n)^2} \cdot [3dx_n^2 - 8x_n^3] \right] + \sigma', A_i + \sigma, A_s
\]

\[
M_R = b \cdot \left[\frac{5f_{cd}}{12(d-x_n)^2} \cdot (12dx_n^3 - 32x_n^4 - 4dx_n^3 + 9x_n^4) \right] + \sigma', A_i - \sigma, A_s
\]

Regione 2(b) \(x_{n,2} \leq x_n \leq x_{n,3}\)

\[
N_R = b \cdot \left[f_{cd}x_n - \frac{5f_{cd}}{3(d-x_n)^2} \cdot (3dx_n^2 - 8x_n^3 - 6dx_n x_{cd} + 3dx_n^3 + 21x_n^2 x_{cd} - 18x_n x_{cd}^3 + 5x_n^3) \right] + \sigma', A_i + \sigma, A_s
\]

\[
M_R = b \cdot \left[f_{cd}x_n - \frac{5f_{cd}}{12(d-x_n)^2} \cdot (12dx_n^3 - 32x_n^4 - 4dx_n^3 + 9x_n^4 - 6x_n x_{cd}^2 + 5x_n^3) \right] + \sigma', A_i - \sigma, A_s
\]

Regione 3-4-5 \(x_{n,i} \leq x_n \leq x_{n,i+1}\)

\[
N_R = b \cdot \left[f_{cd}x_n + \frac{1.75f_{cd}}{3x_n^2} \cdot (2x_n^3 - 3x_n^2 x_{cd} + x_{cd}^3) \right] + \sigma, A_s + \sigma, A_s
\]

\[
M_R = b \cdot \left[f_{cd}x_n x_{cd} - f_{cd} \cdot \frac{x_n^3}{2} + \frac{1.75f_{cd}}{3x_n^2} \cdot (2x_n^3 - 3x_n^2 x_{cd} + x_{cd}^3) x_n - \frac{1.75f_{cd}}{4x_n^2} \cdot (x_n^4 - 2x_n x_{cd}^2 + x_{cd}^4) \right] + \sigma', A_i - \sigma, A_s
\]

Regione 6 \(x_{n,6} \leq x_n \leq \infty\)

\[
N_R = b \cdot \left[f_{cd}x_n + \frac{1.75f_{cd}}{3x_n^2} \cdot (2x_n^3 - 3x_n^2 x_{cd} + x_{cd}^3) \right] + \sigma', A_i + \sigma, A_s \quad \text{per \(x_{cd} \leq H\)}
\]

\[
N_R = b \cdot f_{cd} H + \sigma', A_i + \sigma, A_s \quad \text{per \(x_{cd} > H\)}
\]

\[
M_R = b \cdot \left[f_{cd}x_n x_{cd} - f_{cd} \cdot \frac{x_n^3}{2} + \frac{1.75f_{cd}}{3x_n^2} \cdot (2x_n^3 - 3x_n^2 x_{cd} + x_{cd}^3) x_n - \frac{1.75f_{cd}}{4x_n^2} \cdot (x_n^4 - 2x_n x_{cd}^2 + x_{cd}^4) \right] + \sigma', A_i - \sigma, A \quad \text{per \(x_{cd} \leq H\)}
\]

\[
M_R = b \cdot f_{cd} (x_n H - \frac{H^3}{2}) + \sigma', A_i - \sigma, A \quad \text{per \(x_{cd} > H\)}
\]
9.2.2. Verifica della Sezione

Utilizzando le formule sopraindicate, si confronta N_{Ed} con i valori di N_i, e
- si determina la regione i in cui ricade N_{Ed} confrontando lo stesso con i valori di N_i
- si calcola M_{Rd} utilizzando le equazioni di equilibrio della regione i
- si verifica che risulti $M_{Rd} \geq M_{Ed}$

Poiché N_7, è di difficile determinazione, nel caso in cui $N_{Ed} > N_6$, si calcola M_r con le formule della regione 6, se $M_r < 0$ significa che la sezione non verifica, in caso contrario si controlla se $M_{Ed} < M_r$.
9.3. **SLU per Sforzo Normale e Flessione - Metodo Numerico**

Poiché a seconda del tipo di sezione, \(b(x) \) può non essere costante ma variabile al variare di \(x \), se si conosce la legge matematica di variazione di \(b(x) \), è possibile calcolare gli integrali:

\[
\begin{align*}
\int_{0}^{x_n} \sigma(x)b(x)\,dx &= \int_{0}^{x_g} \sigma(x)b(x)(x_g - x)\,dx \\
\end{align*}
\]

mediante il seguente metodo numerico approssimato,

dividendo l’intervallo \([0, x_n]\) in \(n \) parti, e posto \(\Delta = x_n / n \) può scriversi:

\[
\begin{align*}
\int_{0}^{x_n} \sigma(x)b(x)\,dx &= \sum_{i=1}^{n} \sigma(x_i)b(x_i) \Delta X \\
\int_{0}^{x_g} \sigma(x)b(x)(x_g - x)\,dx &= \sum_{i=1}^{n} \sigma(x_i)b(x_i)(x_g - x_i) \Delta X \\
\end{align*}
\]

Si può rappresentare graficamente il dominio di rottura, \((N_R,M_R)\) utilizzando le formule:

<table>
<thead>
<tr>
<th>Regione 1</th>
<th>(-x_n,0 \leq x_n \leq x_{n,1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_s = -f_{yd}) ; (\varepsilon_s' = \frac{d - x_n}{d - x_n} \varepsilon_{yd}) ; (\sigma_s' = \begin{cases} -E_s \varepsilon_s' & \text{per } \varepsilon_s' \leq \varepsilon_{yd} \ -f_{yd} & \text{per } \varepsilon_s' > \varepsilon_{yd} \end{cases})</td>
<td></td>
</tr>
<tr>
<td>(N_R = \sigma_s A_s + \sigma_s A_i)</td>
<td></td>
</tr>
<tr>
<td>(M_R = \sigma_s A_s \cdot (x_i - d') - \sigma_s A_i \cdot (x_i - d'))</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regione 2(a)</th>
<th>(x_{n,1} \leq x_n \leq x_{n,2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_s = -f_{yd}) ; (\varepsilon_s' = \frac{x_n - d}{d - x_n} \varepsilon_{yd}) ; (\sigma_s' = \begin{cases} -E_s \varepsilon_s' & \text{per } \varepsilon_s' \leq \varepsilon_{yd} \ -f_{yd} & \text{per } \varepsilon_s' > \varepsilon_{yd} \end{cases})</td>
<td></td>
</tr>
<tr>
<td>(x_{cd} = x_n - (d - x_n) \frac{\varepsilon_{yd}^2}{\varepsilon_{yd}} = x_n - 0,20 \cdot (d - x_n))</td>
<td></td>
</tr>
<tr>
<td>(\sigma(x) = \begin{cases} 5f_{cd} \frac{2(x_n - x)}{(d - x_n)^2} - 5 \frac{(x_n - x)^2}{(d - x_n)^2} & \text{per } x > x_{cd} \ 5f_{cd} \frac{2(x_n - x)(d - x_n)^2 - 7x_n^2 + 12x_nx - 5x^2}{(d - x_n)^2} & \text{per } x \leq x_{cd} \end{cases})</td>
<td></td>
</tr>
<tr>
<td>(N_R = \sum_{i=1}^{n} \sigma(x_i)b(x_i) \Delta X + \sigma_s A_s + \sigma_s A_i)</td>
<td></td>
</tr>
<tr>
<td>(M_R = \sum_{i=1}^{n} \sigma(x_i)b(x_i)(x_g - x_i) \Delta X + \sigma_s A_s \cdot (x_i - d') - \sigma_s A_i \cdot (x_i - d'))</td>
<td></td>
</tr>
<tr>
<td>Region 2(b)</td>
<td>$x_{n,2} \leq x_n \leq x_{n,3}$</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>$\sigma_s = -f_{yd}$; $\varepsilon's = \frac{x_n - d}{d - x_n} \varepsilon{ud}$; $\sigma'_s = \begin{cases} -E_s \varepsilon's & \text{per } \varepsilon's \leq \varepsilon{yd} \ -f{yd} & \text{per } \varepsilon's > \varepsilon{yd} \end{cases}$</td>
<td></td>
</tr>
<tr>
<td>$x_{cd} = x_n - (d - x_n) \frac{\varepsilon_{e2}}{\varepsilon_{ud}} = x_n - 0.20 \cdot (d - x_n)$</td>
<td></td>
</tr>
<tr>
<td>$\sigma(x) = \begin{cases} 5f_{cd} \left(\frac{2dx_n - 2dx - 7x_n^2 + 12x_n x - 5x_n^2}{(d - x_n)^2} \right) & \text{per } x > x_{cd} \ f_{cd} & \text{per } x \leq x_{cd} \end{cases}$</td>
<td></td>
</tr>
</tbody>
</table>

Nr ed Mr calcolati con le stesse formule della regione 2(a)

<table>
<thead>
<tr>
<th>Region 3</th>
<th>$x_{n,3} \leq x_n \leq x_{n,4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_s = -E_s \varepsilon_s$; $\varepsilon's = \frac{x_n - d}{x_n} \varepsilon{cu}$; $\sigma'_s = \begin{cases} E_s \varepsilon's & \text{per } \varepsilon's \leq \varepsilon{yd} \ f{yd} & \text{per } \varepsilon's > \varepsilon{yd} \end{cases}$</td>
<td></td>
</tr>
<tr>
<td>$x_{cd} = \frac{\varepsilon_{cu} - \varepsilon_{e2}}{\varepsilon_{cu}} x_n$</td>
<td></td>
</tr>
<tr>
<td>$\sigma(x) = \begin{cases} 1.75f_{cd} \left(\frac{x_n^2 - x_n}{x_n} \right) & \text{per } x > x_{cd} \ f_{cd} & \text{per } x \leq x_{cd} \end{cases}$</td>
<td></td>
</tr>
</tbody>
</table>

Nr ed Mr calcolati con le stesse formule della regione 2(a)

<table>
<thead>
<tr>
<th>Region 4</th>
<th>$x_{n,4} \leq x_n \leq x_{n,5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varepsilon's = \frac{d - x_n}{x_n} \varepsilon{cu} \leq \varepsilon_{yd} \Rightarrow \sigma_s = -E_s \varepsilon_s$; $\varepsilon's = \frac{x_n - d}{x_n} \varepsilon{cu} \Rightarrow \sigma'_s = \begin{cases} E_s \varepsilon's & \text{per } \varepsilon's \leq \varepsilon{yd} \ f{yd} & \text{per } \varepsilon's > \varepsilon{yd} \end{cases}$</td>
<td></td>
</tr>
<tr>
<td>$x_{cd} = \frac{\varepsilon_{cu} - \varepsilon_{e2}}{\varepsilon_{cu}} x_n$</td>
<td></td>
</tr>
<tr>
<td>$\sigma(x) = \begin{cases} 1.75f_{cd} \left(\frac{x_n^2 - x_n}{x_n} \right) & \text{per } x > x_{cd} \ f_{cd} & \text{per } x \leq x_{cd} \end{cases}$</td>
<td></td>
</tr>
</tbody>
</table>

Nr ed Mr calcolati con le stesse formule della regione 2(a)
Regione 5 \(x_{n,5} \leq x_n \leq x_{n,6} \)

\[
\varepsilon_s = \frac{x_n - d}{x_n} \varepsilon_{cu} \quad \Rightarrow \quad \sigma_s = \begin{cases}
E_s \varepsilon_s & \text{per } \varepsilon_s \leq \varepsilon_{yd} \\
 f_{yd} & \text{per } \varepsilon_s > \varepsilon_{yd}
\end{cases}
\]

\[
\varepsilon_s' = \frac{x_n - d'}{x_n} \varepsilon_{cu} \quad \Rightarrow \quad \sigma_s' = \begin{cases}
E_s \varepsilon_s' & \text{per } \varepsilon_s' \leq \varepsilon_{yd} \\
 f_{yd} & \text{per } \varepsilon_s' > \varepsilon_{yd}
\end{cases}
\]

\[
x_{cd} = \frac{\varepsilon_{cu} - \varepsilon_{e2}}{\varepsilon_{cu}} x_n
\]

\[
\sigma(x) = \begin{cases}
\frac{1,75 f_{cd}}{x_n} \cdot (x_n^2 - x^2) & \text{per } x > x_{cd} \\
\frac{f_{cd}}{x_n} & \text{per } x \leq x_{cd}
\end{cases}
\]

Regione 6 \(x_{n,6} \leq x_n \leq x_{n,7} \)

\[
\varepsilon_s = \frac{x_n - d}{x_n} \varepsilon_{cu} \quad \Rightarrow \quad \sigma_s = \begin{cases}
E_s \varepsilon_s & \text{per } \varepsilon_s \leq \varepsilon_{yd} \\
 f_{yd} & \text{per } \varepsilon_s > \varepsilon_{yd}
\end{cases}
\]

\[
\varepsilon_s' = \frac{x_n - d'}{x_n} \varepsilon_{cu} \quad \Rightarrow \quad \sigma_s' = \begin{cases}
E_s \varepsilon_s' & \text{per } \varepsilon_s' \leq \varepsilon_{yd} \\
 f_{yd} & \text{per } \varepsilon_s' > \varepsilon_{yd}
\end{cases}
\]

\[
x_{cd} = \frac{\varepsilon_{cu} - \varepsilon_{e2}}{\varepsilon_{cu}} x_n
\]

\[
\sigma(x) = \begin{cases}
\frac{1,75 f_{cd}}{x_n} \cdot (x_n^2 - x^2) & \text{per } x > x_{cd} \\
\frac{f_{cd}}{x_n} & \text{per } x \leq x_{cd}
\end{cases}
\]

Infine la verifica viene condotta utilizzando le formule sopraindicate
- si determina la regione \(i \) in cui ricade \(N_{Ed} \) confrontando lo stesso con i valori di \(N_i \)
- si calcola \(M_{Rd} \) utilizzando le equazioni di equilibrio della regione \(i \)
- si verifica che risulti \(M_{Rd} \geq M_{Ed} \)
9.3.1. Confronto tra metodo matematico e metodo numerico

Data la sezione avente le seguenti caratteristiche geometriche:

![Diagrama di sezione geometrica](image1)

e le seguenti caratteristiche meccaniche:

![Diagrama di sezione meccanica](image2)
Utilizzando le formule matematiche si ottiene il seguente Dominio di Rottura:

\[N_0 = \sigma'_{s,0} A_s + \sigma_{s,0} A_s = -629 \text{kN} \]
\[N_1 = \sigma'_{s,1} A_s + \sigma_{s,1} A_s = -423 \text{kN} \]

\[N_2 = b \cdot \frac{5 f_{cd}}{3(d - x_{n,2})^2} \cdot \left[3 dx_{n,2}^2 - 8 x_{n,2}^3 \right] + \sigma_{s,2} A_s + \sigma_{s,3} A_s = 115 \text{kN} \]
\[N_3 = b \left[f_{cd} x_{cd} + \frac{1.75 f_{cd}}{3 x_{n,3}^2} \cdot (2 x_{n,3}^3 - 3 x_{n,3}^2 x_{cd} + x_{cd}^3) \right] + \sigma'_{s,3} A_s + \sigma_{s,3} A = 460 \text{kN} \]
\[N_4 = b \left[f_{cd} x_{cd} + \frac{1.75 f_{cd}}{3 x_{n,4}^2} \cdot (2 x_{n,4}^3 - 3 x_{n,4}^2 x_{cd} + x_{cd}^3) \right] + \sigma'_{s,4} A_s + \sigma_{s,4} A = 1.157 \text{kN} \]
\[N_5 = b \left[f_{cd} x_{cd} + \frac{1.75 f_{cd}}{3 x_{n,5}^2} \cdot (2 x_{n,5}^3 - 3 x_{n,5}^2 x_{cd} + x_{cd}^3) \right] + \sigma'_{s,5} A_s + \sigma_{s,5} A = 2.088 \text{kN} \]
\[N_6 = b \left[f_{cd} x_{cd} + \frac{1.75 f_{cd}}{3 x_{n,6}^2} \cdot (2 x_{n,6}^3 - 3 x_{n,6}^2 x_{cd} + x_{cd}^3) \right] + \sigma'_{s,6} A_s + \sigma_{s,6} A = 2.236 \text{kN} \]
\[N_7 = N \sigma'(M = 0) = 2.792 \text{kN} \]
Utilizzando il metodo numerico, ossia approssimato, per la stessa sezione si ottengono i seguenti Domini di Rottura, al variare della precisione con cui si calcolano gli integrali (DX=1mm – Precisione maggiore; DX=50mm – Precisione minore)

![Diagram of numerical fracture domain](image)

Anche nel grafico sopra riportato, si sono evidenziati i valori delle coppie (N_{RD}, M_{RD}) in corrispondenza dei punti di separazione delle varie regioni, per DX=1mm (curva M1) e DX=50mm (curva M50).

Come si evince dal confronto tra il dominio di rottura determinato con il metodo matematico e quello determinato con il metodo numerico, il metodo numerico conduce a risultati prossimi al metodo matematico per DX=1mm, mentre conduce a risultati con errori del 10% circa per DX=50mm.
9.4. **SLU per Taglio**

L’esame dello stato limite ultimo per taglio va effettuato tenendo conto che in generale alla sollecitazione di taglio si accompagna la sollecitazione per flessione e spesso anche per sforzo normale e torsione, la cui esatta valutazione è particolarmente complessa.

Inoltre, si precisa che il taglio dà origine nella sezione in c.a. sia a delle tensioni principali di compressione che di trazione.

In particolare, si osservi che fino a quando la tensione principale di trazione si mantiene al di sotto del valore di resistenza a trazione del cls. \(f_{r,t} = f_{ctk} / \gamma_c \), questa può essere assorbita integralmente dal cls; se invece la tensione di trazione supera la resistenza a trazione del cls. si verifica il fessurarsi della trave e pertanto è necessario disporre delle armature trasversali.

La determinazione di tali armature può essere effettuata utilizzando il modello teorico del “traliccio ideale resistente di Ritter-Morsh” costituito da aste incernierate nei nodi con un corrente superiore di cls compresso, una biella a 45° di cls. compresso, un’asta inclinata tesa ed un corrente inferiore di acciaio teso.

Secondo tale metodo si ha per tutta la trave un unico tipo di lesioni, inclinate di 45° rispetto all’asse della trave e la forza di taglio esterna viene interamente portata dall’armatura trasversale.

In assenza di armatura trasversale, di conseguenza secondo tale modello la trave non può sopportare alcun incremento di carico al di là di quello di fessurazione.

In realtà, varie ricerche sperimentali hanno dimostrato che esistono altri meccanismi che contribuiscono a sopportare lo sforzo di taglio, e indicativamente vi è:

- **Taglio portato dal corrente compresso di conglomerato**

 E’ il taglio portato dalle tensioni tangenziali \(\tau \) che si sviluppano nella zona di conglomerato compresso non fessurato.

- **Taglio portato dalla biella d’anima**

 Un’altra aliquota del taglio esterno viene portata dalle stesse bielle di conglomerato compresso che si evidenziano tra due lesioni successive.

- **Taglio portato per ingranamento degli inerti**

 Lungo la fessura la superficie del cls. non è perfettamente liscia, ma segue l’andamento degli inerti, per tale motivo quando nella fessura si ha uno scorrimento relativo, in ciascuna delle due facce di cls. si generano delle tensioni tangenziali e normali che danno luogo ad una componente verticale di taglio.

- **Effetto Spinotto**

 Un’altra aliquota del taglio esterno viene portata per “effetto spinotto”, ossia mediante la resistenza a taglio offerta dall’armatura longitudinale che attraversa una fessura.
La verifica agli stati limite per Taglio viene quindi effettuata utilizzando delle formule empiriche, che si sono dimostrate più esatte di quelle ottenute con il criterio di Morsh, le quali comunque si basano sempre sulla schematizzazione a traliccio (art.4.1.2.1.3.2 DM. 14/01/2008), ma tengono conto degli effetti sopra indicati.

Si riportano di seguito le formule da verificare allo S.L.U. per taglio previste dalla normativa vigente D.M. 14/01/2008.

9.4.1. D.M. 2008 Art. 4.1.2.1.3 - Resistenza nei confronti di sollecitazioni taglianti

4.1.2.1.3.1 Elementi senza armature trasversali resistenti a taglio
È consentito l’impiego di solai, piastre e membrature a comportamento analogo, sprovviste di armature trasversali resistenti a taglio. La resistenza a taglio V\(_{Rd}\) di tali elementi deve essere valutata, utilizzando formule di comprovata affidabilità, sulla base della resistenza a trazione del calcestruzzo.

La verifica di resistenza (SLU) si pone con

\[V_{Rd} \geq V_{Ed} \tag{4.1.13} \]

dove \(V_{Ed} \) è il valore di calcolo dello sforzo di taglio agente.

Con riferimento all’elemento fessurato da momento flettente, la resistenza al taglio si valuta con

\[V_{RD} = 0,18 \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3} / \gamma_c + 0,15 \cdot \sigma_{cp} \right) \cdot b_w \cdot d \geq (v_{min} + 0,15 \cdot \sigma_{cp}) \cdot b_w \cdot d \tag{4.1.14} \]

con

\[k = 1 + (200 / d)^{1/2} \leq 2 \]

\[v_{min} = 0,035^{3/2} \cdot f_{ck}^{1/2} \]

e dove

\[d \] è l’altezza utile della sezione (in mm);

\[\rho_1 = A_{sl} / (b_w \cdot d) \] è il rapporto geometrico di armatura longitudinale (\(\leq 0,02 \));

\[\sigma_{cp} = N_{Ed} / A_c \] è la tensione media di compressione nella sezione (\(\leq 0,2 \cdot f_{cd} \));

\[b_w \] è la larghezza minima della sezione (in mm).

Nel caso di elementi in cemento armato precompresso disposti in semplice appoggio, nelle zone non fessurate da momento flettente (con tensioni di trazione non superiori a \(f_{cd} \)) la resistenza può valutarsi, in via semplificativa, con la formula:

\[V_{RD} = 0,7 \cdot b_w \cdot d \cdot (f_{cd}^2 + \sigma_{cp} \cdot f_{cd})^{1/2} \tag{4.1.15} \]

In presenza di significativi sforzi di trazione, la resistenza a taglio del calcestruzzo è da considerarsi nulla e, in tal caso, non è possibile adottare elementi sprovvisti di armatura trasversale.

Le armature longitudinali, oltre ad assorbire gli sforzi conseguenti alle sollecitazioni di flessione, devono assorbire quelli provocati dal taglio dovuti all’inclinazione delle fessure rispetto all’asse della trave, inclinazione assunta pari a 45°. In particolare, in corrispondenza degli appoggi, le armature longitudinali devono assorbire uno sforzo pari al taglio sull’appoggio.

4.1.2.1.3.2 Elementi con armature trasversali resistenti al taglio

La resistenza a taglio V\(_{Rs}\) di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell’ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d’anima inclinati. L’inclinazione \(\theta \) dei puntoni di calcestruzzo rispetto all’asse della trave deve rispettare i limiti seguenti:

\[1 \leq \text{ctg} \theta \leq 2,5 \tag{4.1.16} \]

La verifica di resistenza (SLU) si pone con
V_{Rd} \geq V_{Ed} \quad (4.1.17)

dove \(V_{Ed} \) è il valore di calcolo dello sforzo di taglio agent.

Con riferimento all’armatura trasversale, la resistenza di calcolo a “taglio trazione” si calcola con:

\[
V_{Rd} = 0.9 \cdot d \cdot A_{sw} \cdot f_{yd} \cdot (\cotg \alpha + \cotg \theta) \cdot \sin \alpha \quad (4.1.18)
\]

Con riferimento al calcestruzzo d’anima, la resistenza di calcolo a “taglio compressione” si calcola con

\[
V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{cd} \cdot (\cotg \alpha + \cotg \theta)/(1 + \cotg^2 \theta) \quad (4.1.19)
\]

La resistenza al taglio della trave è la minore delle due sopra definite:

\[
V_{Rd} = \min(V_{Rsd}, V_{Rcd}) \quad (4.1.20)
\]

Dove

- \(d, b_w e \sigma_{cp} \) hanno il significato già visto in § 4.1.2.1.3.1. e inoltre si è posto:
- \(A_{sw} \) area dell’armatura trasversale;
- \(s \) interasse tra due armature trasversali consecutive;
- \(\alpha \) angolo di inclinazione dell’armatura trasversale rispetto all’asse della trave;
- \(f'_{cd} \) resistenza a compressione ridotta del calcestruzzo d’anima (\(f'_{cd} = 0.5 \cdot f_{cd} \));
- \(\alpha_c \) coefficiente maggiorativo pari a 1 per membrature non compresse
 - 1 + \(\sigma_{cp}/f_{cd} \) per 0 \(\leq \sigma_{cp} < 0.25 \cdot f_{cd} \)
 - 1.25 per 0.25 \(\leq f_{cd} \leq 0.5 \cdot f_{cd} \)
 - 2.5(1 - \(\sigma_{cp}/f_{cd} \)) per 0.5 \(\leq \sigma_{cp} \leq f_{cd} \)

In presenza di significativo sforzo assiale, ad esempio conseguente alla precompressione, si dovrà aggiungere la limitazione:

\[
(\cotg \theta_I \leq \cotg \theta) \quad (4.1.21)
\]

dove \(\theta_I \) è l’angolo di inclinazione della prima fessurazione ricavato da \(\cotg \theta_I = \tau \)/\(\sigma_I \) mentre \(\tau \) e \(\sigma_I \) sono rispettivamente la tensione tangenziale e la tensione principale di trazione sulla corda baricentrica della sezione intesa interamente reagente.

Le armature longitudinali, dimensionate in base alle sollecitazioni flessionali, dovranno essere prolungate di una misura pari a

\[
a_i = 0.9 \cdot d \cdot (\cotg \theta - \cotg \alpha)/2 \quad \geq 0 \quad (4.1.22)
\]

Nel caso particolare di sezione rettangolare, se si dispongono le staffe solo verticalmente, essendo:

- \(\theta = 45^\circ \) \(\Rightarrow \) \(\cotg(\theta) = 1 \)
- \(\alpha = 90^\circ \) \(\Rightarrow \) \(\cotg(\alpha) = 0 \)

le formule sopra esposte possono riscriversi:

Resistenza offerta dall’armatura a taglio:

\[
V_{RD} = 0.9 \cdot d \cdot A_{sw} \cdot f_{yd} \]

Resistenza offerta dalle bielle di cls.

\[
V_{Rcd} = 0.45 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{cd}
\]

VERIFICA:

\[
V_{Rd} = \min(V_{Rsd}, V_{Rcd}) \geq V_{Ed}
\]

Inoltre, le armature longitudinali, dimensionate in base alle sollecitazioni flessionali, dovranno essere prolunlate di una misura pari a

\[
a_i = 0.45 \cdot d
\]
7.4.6.1.1 Travi

La larghezza \(b \) della trave deve essere \(\geq 20 \) cm e, per le travi basse comunemente denominate “a spessore”, deve essere non maggiore della larghezza del pilastro, aumentata da ogni lato di metà dell’altezza della sezione trasversale della trave stessa, risultando comunque non maggiore di due volte \(b_c \), essendo \(b_c \) la larghezza del pilastro ortogonale all’asse della trave.

Il rapporto \(b/h \) tra larghezza e altezza della trave deve essere \(\geq 0,25 \).

Non deve esserci eccentricità tra l’asse delle travi che sostengono pilastri in falso e l’asse dei pilastri che le sostengono. Esse devono avere almeno due supporti, costituiti da pilastri o pareti. Le pareti non possono appoggiarsi in falso su travi o solette.

Le zone critiche si estendono, per CD”B” e CD”A”, per una lunghezza pari rispettivamente a 1 e 1,5 volte l’altezza della sezione della trave, misurata a partire dalla faccia del nodo trave-pilastro o da entrambi i lati a partire dalla sezione di prima plasticizzazione. Per travi che sostengono un pilastro in falso, si assume una lunghezza pari a 2 volte l’altezza della sezione misurata da entrambe le facce del pilastro.

7.4.6.1.2 Pilastri

La dimensione minima della sezione trasversale non deve essere inferiore a 250 mm.

Se \(\theta \), quale definito nel § 7.3.1, risulta \(>0,1 \), l’altezza della sezione non deve essere inferiore ad un decimo della maggiore tra le distanze tra il punto in cui si annulla il momento flettente e le estremità del pilastro.

In assenza di analisi più accurate si può assumere che la lunghezza della zona critica sia la maggiore tra: l’altezza della sezione, 1/6 dell’altezza libera del pilastro, 45 cm, l’altezza libera del pilastro se questa è inferiore a 3 volte l’altezza della sezione.
11. **D.M. 2008 Art.4.1.6.1 - Armatura elementi monodimensionali (Travi, Pilastri)**

4.1.6.1.1 Armatura delle travi

L’area dell’armatura longitudinale in zona tesa non deve essere inferiore a

\[A_{s,\text{min}} = 0.26 \cdot b_t \cdot d \quad ; \quad A_{s,\text{min}} \geq 0.0013 \cdot b_t \cdot d \]

(4.1.43)

\[A_{s,\text{min}} = 0.26 \cdot b_t \cdot d \quad ; \quad A_{s,\text{min}} \geq 0.0013 \cdot b_t \cdot d \]

dove:

- \(b_t \) rappresenta la larghezza media della zona tesa; per una trave a T con piattabanda compressa, nel calcolare il valore di \(b_t \) si considera solo la larghezza dell’anima;
- \(d \) è l’altezza utile della sezione;
- \(f_{c\text{tm}} \) è il valore medio della resistenza a trazione assiale definita nel § 11.2.10.2;
- \(f_{yk} \) è il valore caratteristico della resistenza a trazione dell’armatura ordinaria.

Negli appoggi di estremità all’intradosso deve essere disposta un’armatura efficacemente ancorata, calcolata per uno sforzo di trazione pari al taglio.

Al di fuori delle zone di sovrapposizione, l’area di armatura tesa o compressa non deve superare individualmente \(A_{s,\text{max}} = 0.04 A_c \), essendo \(A_c \) l’area della sezione trasversale di calcestruzzo.

Le travi devono prevedere armatura trasversale costituita da staffe con sezione complessiva non inferiore ad \(A_{st} = 1.5 \cdot b \text{ mm}^2/\text{m} \) essendo \(b \) lo spessore minimo dell’anima in millimetri, con un minimo di tre staffe al metro e comunque passo non superiore a 0,8 volte l’altezza utile della sezione.

In ogni caso almeno il 50% dell’armatura necessaria per il taglio deve essere costituita da staffe.

4.1.6.1.2 Armatura dei pilastri

Nel caso di elementi sottoposti a prevalente sforzo normale, le barre parallele all’asse devono avere diametro maggiore od uguale a 12 mm e non potranno avere interassi maggiori di 300 mm. Inoltre la loro area non deve essere inferiore a

\[A_{s,\text{min}} = 0.10 \cdot N_{Ed} \cdot f_{yd} \]

(4.1.44)

\[A_{s,\text{min}} = 0.10 \cdot N_{Ed} \cdot f_{yd} \]

dove:

- \(f_{yd} \) è la resistenza di calcolo dell’armatura (riferita allo snervamento)
- \(N_{Ed} \) è la forza di compressione assiale di calcolo
- \(A_c \) è l’area di calcestruzzo.

Le armature trasversali devono essere poste ad interasse non maggiore di 12 volte il diametro minimo delle barre impiegate per l’armatura longitudinale, con un massimo di 250 mm. Il diametro delle staffe non deve essere minore di 6 mm e di \(\frac{1}{4} \) del diametro massimo delle barre longitudinali.

Al di fuori delle zone di sovrapposizione, l’area di armatura non deve superare \(A_{s,\text{max}} = 0.04 A_c \), essendo \(A_c \) l’area della sezione trasversale di calcestruzzo.
7.4.6.2.1 Travi

Armature longitudinali
Almeno due barre di diametro non inferiore a 14 mm devono essere presenti superiormente e inferiormente per tutta la lunghezza della trave.

In ogni sezione della trave, salvo giustificazioni che dimostrino che le modalità di collasso della sezione sono coerenti con la classe di duttilità adottata, il rapporto geometrico ρ relativo all’armatura tesa, indipendentemente dal fatto che l’armatura tesa sia quella al lembo superiore della sezione A_s o quella al lembo inferiore della sezione A_i, deve essere compreso entro i seguenti limiti:

\[
\frac{1.4}{f_{yk}} \leq \rho \leq \rho_{\text{comp}} + \frac{3.5}{f_{yk}} \tag{7.4.25}
\]

dove:
ρ è il rapporto geometrico relativo all’armatura tesa pari ad $A_s/(b \cdot h)$ oppure ad $A_i/(b \cdot h)$;
ρ_{comp} è il rapporto geometrico relativo all’armatura compressa;
f_{yk} è la tensione caratteristica di snervamento dell’acciaio (in MPa).

Nelle zone critiche della trave, inoltre, deve essere $\rho_{\text{comp}} \geq 1/2 \rho$ e comunque $\geq 0.25 \rho$.

L’armatura superiore, disposta per il momento negativo alle estremità delle travi, deve essere contenuta, per almeno il 75%, entro la larghezza dell’anca e comunque, per le sezioni a T o ad L, entro una fascia di soletta pari rispettivamente alla larghezza del pilastro, od alla larghezza del pilastro aumentata di 2 volte lo spessore della soletta da ciascun lato del pilastro, a seconda che nel nodo manchi o sia presente una trave ortogonale. Almeno ¼ della suddetta armatura deve essere mantenuta per tutta la lunghezza della trave.

Le armature longitudinali delle travi, sia superiori che inferiori, devono attraversare, di regola, i nodi senza ancorarsi o giuntarsi per sovrapposizione in essi. Quando ciò non risulti possibile, sono da rispettare le seguenti prescrizioni:
- le barre vanno ancorate oltre la faccia opposta a quella di intersezione con il nodo, oppure rivoltate verticalmente in corrispondenza di tale faccia, a contenimento del nodo;
- la lunghezza di ancoraggio delle armature tese va calcolata in modo da sviluppare una tensione nelle barre pari a 1,25 f_{yk}, e misurata a partire da una distanza pari a 6 diametri dalla faccia del pilastro verso l’interno.

La parte dell’armatura longitudinale della trave che si ancora oltre il nodo non può terminare all’interno di una zona critica, ma deve ancorarsi oltre di essa.

La parte dell’armatura longitudinale della trave che si ancora nel nodo, deve essere collocata all’interno delle staffe del pilastro. Per prevenire lo sfilamento di queste armature il diametro delle barre non inclinate deve essere $\leq \alpha_{0L}$ volte l’altezza della sezione del pilastro, essendo

\[
\alpha_{0L} = \begin{cases}
\frac{7.5 \cdot f_{\text{cmt}}}{\gamma_{Rd} \cdot f_{yd}} \cdot \frac{1}{1+0.8 \nu_d} & \text{per nodi interni} \\
\frac{7.5 \cdot f_{\text{cmt}}}{\gamma_{Rd} \cdot f_{yd}} \cdot \frac{1+0.75k_D}{1+0.75k_D} \cdot \frac{\rho_{\text{comp}}}{\rho} & \text{per nodi esterni}
\end{cases}
\]

dove:
ν_d è la forza assiale di progetto normalizzata;
k_D vale 1 o 2/3, rispettivamente per CD”A” e per CD”B”;
γ_{Rd} vale 1,2 o 1, rispettivamente per CD”A” e per CD”B”.

63
Se per nodi esterni non è possibile soddisfare tale limitazione, si può prolungare la trave oltre il pilastro, si possono usare piastre saldate alla fine delle barre, si possono piegare le barre per una lunghezza minima pari a 10 volte il loro diametro disponendo un’apposita armatura trasversale dietro la piegatura.

Armature trasversali

Nelle zone critiche devono essere previste staffe di contenimento. La prima staffa di contenimento deve distare non più di 5 cm dalla sezione a filo pilastro; le successive devono essere disposte ad un passo non superiore alla minore tra le grandezze seguenti:
- un quarto dell’altezza utile della sezione trasversale;
- 175 mm e 225 mm, rispettivamente per CD“A” e CD “B”;
- 6 volte e 8 volte il diametro minimo delle barre longitudinali considerate ai fini delle verifiche, rispettivamente per CD“A” e CD “B”
- 24 volte il diametro delle armature trasversali.

Per staffa di contenimento si intende una staffa rettangolare, circolare o a spirale, di diametro minimo 6 mm, con ganci a 135° prolungati per almeno 10 diametri alle due estremità. I ganci devono essere assicurati alle barre longitudinali.

7.4.6.2.2 Pilastri

Nel caso in cui i tamponamenti non si estendano per l’intera altezza dei pilastri adiacenti, l’armatura risultante deve essere estesa per una distanza pari alla profondità del pilastro oltre la zona priva di tamponamento. Nel caso in cui l’altezza della zona priva di tamponamento fosse inferiore a 1,5 volte la profondità del pilastro, debbono essere utilizzate armature bi-diagonali.

Nel caso precedente, qualora il tamponamento sia presente su un solo lato di un pilastro, l’armatura trasversale da disporre alle estremità del pilastro ai sensi del § 7.4.5.3. deve essere estesa all’intera altezza del pilastro.

Armature longitudinali

Per tutta la lunghezza del pilastro l’interasse tra le barre non deve essere superiore a 25 cm.

Nella sezione corrente del pilastro, la percentuale geometrica \(\rho\) di armatura longitudinale, con \(\rho\) rapporto tra l’area dell’armatura longitudinale e l’area della sezione del pilastro, deve essere compresa entro i seguenti limiti:

\[
1\% \leq \rho \leq 4\% \quad (7.4.27)
\]

Se sotto l’azione del sisma la forza assiale su un pilastro è di trazione, la lunghezza di ancoraggio delle barre longitudinali deve essere incrementata del 50%.

Armature trasversali

Nelle zone critiche devono essere rispettate le condizioni seguenti: le barre disposte sugli angoli della sezione devono essere contenute dalle staffe; almeno una barra ogni due, di quelle disposte sui lati, deve essere trattenuta da staffe interne o da legature; le barre non fissate devono trovarsi a meno di 15 cm e 20 cm da una barra fissata, rispettivamente per CD“A” e CD”B”.

Il diametro delle staffe di contenimento e legature deve essere non inferiore a 6 mm ed il loro passo deve essere non superiore alla più piccola delle quantità seguenti:
- 1/3 e 1/2 del lato minore della sezione trasversale, rispettivamente per CD“A” e CD”B”;
- 125 mm e 175 mm, rispettivamente per CD“A” e CD”B”;
- 6 e 8 volte il diametro delle barre longitudinali che collegano, rispettivamente per CD“A” e CD”B”.
Si devono disporre staffe in un quantitativo minimo non inferiore a:

\[
\frac{A_{st}}{s} \geq \begin{cases}
0.08 \frac{f_{cd} \cdot b_{st}}{f_{yd}} & \text{per CD "A" al di fuori della zona critica e per CD "B"} \\
0.12 \frac{f_{cd} \cdot b_{st}}{f_{yd}} & \text{per CD "A"}
\end{cases} \quad (7.4.28)
\]

in cui \(A_{st} \) è l’area complessiva dei bracci delle staffe, \(b_{st} \) è la distanza tra i bracci più esterni delle staffe ed \(s \) è il passo delle staffe.
Public Sub CalcolaNMDominioSezRett(Direz As String, Procedi As Boolean, msg As String)
' calcola i valori di N ed M al variare di xn
' per le varie regioni
''
' DN : Incremento di xn nelle varie regioni in cui verranno calcolati Nrd ed Mrd
' DX : Porzione infinitesima della sezione in cui calcolare sigma(x) al variare di x tra 0 e xn
'
Dim eps1 As Double, eps As Double, sigmaSup As Double, sigmaInf As Double, sigmaX As Double
Dim bX As Double
Dim xx As Double, xn As Double, nP As Long, k As Long
Dim xG As Double, Xi As Double, xcd As Double, xni(7) As Double, Ni(7) As Double
Dim auxN() As Double, auxM() As Double
Dim DN As Double, DX As Double
Dim dInf As Double, dSup As Double
DN = SezRett.DeltaN
If DN <= 0 Then DN = 1
DX = SezRett.DeltaX
If DX <= 0 Then DX = 1
dInf = SezRett.Copriferro_Inf
dSup = SezRett.Copriferro_Sup
If Direz = "Y" Then
hh = SezRett.Altezza
bX = SezRett.Base
auxAinf = SezRett.As_inf
auxAsup = SezRett.As_sup
ReDim Nyrd(0) As Double
ReDim Nzrd(0) As Double
SezRett.MrdY = 0
Else
hh = SezRett.Base
bX = SezRett.Altezza
auxAinf = SezRett.As_infY
auxAsup = SezRett.As_supY
ReDim Nzrd(0) As Double
ReDim Nzrd(0) As Double
SezRett.MrdZ = 0
End If
dd = hh - dInf
xG = hh / 2
',
Procedi = True
On Error GoTo 100
auxMrd = 0
',
' Region 1
For xn = xni(0) To xni(1) Step DN
If xn > xni(1) Then xn = xni(1)
eps1 = -Mat.eps_ud * (dSup - xn) / (dd - xn)
If Abs(eps1) < Mat.eps_yd Then
sigmaSup = Mat.Es * eps1
Else
sigmaSup = -Mat.fyd
End If
sigmaInf = -Mat.fyd
nP = nP + 1
ReDim Preserve auxN(nP)
ReDim Preserve auxM(nP)
auxN(nP) = sigmaSup * auxAsup + sigmaInf * auxAinf
auxM(nP) = sigmaSup * auxAsup * (xG - dSup) - sigmaInf * auxAinf * (Xi - dInf)
If xn = xni(0) Then Ni(0) = auxN(nP)
Next xn
',
' Region 2a
For xn = xni(1) To xni(2) Step DN
If xn > xni(2) Then xn = xni(2)
eps1 = Mat.eps_ud * (xn - dSup) / (dd - xn)
If eps1 < 0 Then
 If Abs(eps1) < Mat.eps_yd Then
 sigmaSup = -Mat.Es * Abs(eps1)
 Else
 sigmaSup = -Mat.fyd
 End If
Else
 If eps1 < Mat.eps_yd Then
 sigmaSup = Mat.Es * eps1
 Else
 sigmaSup = Mat.fyd
 End If
End If

nP = nP + 1
ReDim Preserve auxN(nP)
ReDim Preserve auxM(nP)
xx = 0
auxN(nP) = 0: auxM(nP) = 0
While xx <= xn
 sigmaX = (5 * Mat.fcd / (dd - xn) ^ 2) * (2 * (dd - xn) * (xn - xx) - 5 * (xn - xx) ^ 2)
 auxN(nP) = auxN(nP) + DX * sigmaX * bX
 auxM(nP) = auxM(nP) + DX * sigmaX * bX * (xG - xx)
 xx = xx + DX
Wend
auxN(nP) = auxN(nP) + sigmaSup * auxAsup + sigmaInf * auxAinf
auxM(nP) = auxM(nP) + sigmaSup * auxAsup * (xG - dSup) - sigmaInf * auxAinf * (Xi - dInf)
If xn = xni(1) Then Ni(1) = auxN(nP)
Next xn

On Error GoTo 0
Dim Nrd_sx As Double, Nrd_dx As Double
Dim Mrd_sx As Double, Mrd_dx As Double
' Calcola auxMrd
For k = 1 To nP
 auxN(k) = auxN(k) / 1000
 auxM(k) = auxM(k) / 1000000
 If auxN(k) <= SezRett.Ned_x Then
 Nrd_sx = auxN(k)
 Mrd_sx = auxM(k)
 End If
Next k

If auxN(k) >= SezRett.Ned_x Then
 Mrd_sx = auxM(k)
End If

If auxN(k) <= SezRett.Ned_x And SezRett.Ned_x <= auxM(k) Then
 Nrd_dx = auxN(k)
Else
 Nrd_dx = auxM(k)
End If

' copia variabili ausiliare in variabili specifiche a seconda della direzione di verifica
If Direz = "Y" Then
 ReDim Nyrd(nP) As Double, Myrd(nP) As Double
 For k = 1 To nP
 Nyrd(k) = auxN(k)
 Myrd(k) = auxM(k)
 Next k
 SezRett.MrdY = auxMrd
Else
 ReDim Nzrd(nP) As Double, Mzrd(nP) As Double
 For k = 1 To nP
 Nzrd(k) = auxN(k)
 Mzrd(k) = auxM(k)
 Next k
 SezRett.MrdZ = auxMrd
End If
On Error GoTo 0
Exit Sub
'
100
Procedi = False
msg = "Errore nel calcolo dei Valori di Nrd , Mrd" & Chr(10) + Err.Description
On Error GoTo 0
End Sub
14. **Bibliografia**

[1] D.M. 14 gennaio 2008 “Norme Tecniche per le Costruzioni”;

